下一代飞机的新型和非常规推进集成综述

Q2 Engineering Designs Pub Date : 2024-02-20 DOI:10.3390/designs8020020
K. Abu Salem, G. Palaia, P. D. Bravo-Mosquera, A. Quarta
{"title":"下一代飞机的新型和非常规推进集成综述","authors":"K. Abu Salem, G. Palaia, P. D. Bravo-Mosquera, A. Quarta","doi":"10.3390/designs8020020","DOIUrl":null,"url":null,"abstract":"The aim of this review paper is to collect and discuss the most relevant and updated contributions in the literature regarding studies on new or non-conventional technologies for propulsion–airframe integration. Specifically, the focus is given to both evolutionary technologies, such as ultra-high bypass ratio turbofan engines, and breakthrough propulsive concepts, represented in this frame by boundary layer ingestion engines and distributed propulsion architectures. The discussion focuses mainly on the integration effects of these propulsion technologies, with the aim of defining performance interactions with the overall aircraft, in terms of aerodynamic, propulsive, operating and mission performance. Hence, this work aims to analyse these technologies from a general perspective, related to the effects they have on overall aircraft design and performance, primarily considering the fuel consumption as a main metric. Potential advantages but also possible drawbacks or detected showstoppers are proposed and discussed with the aim of providing as broad a framework as possible for the aircraft design development roadmap for these emerging propulsive technologies.","PeriodicalId":53150,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Novel and Non-Conventional Propulsion Integrations for Next-Generation Aircraft\",\"authors\":\"K. Abu Salem, G. Palaia, P. D. Bravo-Mosquera, A. Quarta\",\"doi\":\"10.3390/designs8020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this review paper is to collect and discuss the most relevant and updated contributions in the literature regarding studies on new or non-conventional technologies for propulsion–airframe integration. Specifically, the focus is given to both evolutionary technologies, such as ultra-high bypass ratio turbofan engines, and breakthrough propulsive concepts, represented in this frame by boundary layer ingestion engines and distributed propulsion architectures. The discussion focuses mainly on the integration effects of these propulsion technologies, with the aim of defining performance interactions with the overall aircraft, in terms of aerodynamic, propulsive, operating and mission performance. Hence, this work aims to analyse these technologies from a general perspective, related to the effects they have on overall aircraft design and performance, primarily considering the fuel consumption as a main metric. Potential advantages but also possible drawbacks or detected showstoppers are proposed and discussed with the aim of providing as broad a framework as possible for the aircraft design development roadmap for these emerging propulsive technologies.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.3390/designs8020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.3390/designs8020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本综述旨在收集和讨论文献中与推进-机身一体化的新技术或非常规技术研究相关的最新资料。具体而言,重点关注超高旁通比涡扇发动机等演进技术,以及以边界层摄入发动机和分布式推进结构为代表的突破性推进概念。讨论主要集中在这些推进技术的集成效果上,目的是在气动、推进、运行和任务性能方面确定与整个飞机的性能交互。因此,这项工作旨在从总体角度分析这些技术对飞机总体设计和性能的影响,主要考虑作为主要指标的燃料消耗。提出并讨论了潜在的优势,以及可能存在的缺点或发现的阻碍因素,目的是为这些新兴推进技术的飞机设计发展路线图提供一个尽可能广泛的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Novel and Non-Conventional Propulsion Integrations for Next-Generation Aircraft
The aim of this review paper is to collect and discuss the most relevant and updated contributions in the literature regarding studies on new or non-conventional technologies for propulsion–airframe integration. Specifically, the focus is given to both evolutionary technologies, such as ultra-high bypass ratio turbofan engines, and breakthrough propulsive concepts, represented in this frame by boundary layer ingestion engines and distributed propulsion architectures. The discussion focuses mainly on the integration effects of these propulsion technologies, with the aim of defining performance interactions with the overall aircraft, in terms of aerodynamic, propulsive, operating and mission performance. Hence, this work aims to analyse these technologies from a general perspective, related to the effects they have on overall aircraft design and performance, primarily considering the fuel consumption as a main metric. Potential advantages but also possible drawbacks or detected showstoppers are proposed and discussed with the aim of providing as broad a framework as possible for the aircraft design development roadmap for these emerging propulsive technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mechanical Transmissions with Convex–Concave Multipair Contact of Teeth in Precessional Gearing Design and Operational Assessment of a Railroad Track Robot for Railcar Undercarriage Condition Inspection Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1