用于神经组织再生的水凝胶生物打印给药系统

Eliza Marie Steele, Zacheus L. Carr, E. Dosmar
{"title":"用于神经组织再生的水凝胶生物打印给药系统","authors":"Eliza Marie Steele, Zacheus L. Carr, E. Dosmar","doi":"10.3390/biophysica4010004","DOIUrl":null,"url":null,"abstract":"Globally, thousands of people are affected by severe nerve injuries or neurodegenerative disorders. These conditions cannot always be cured because nerve tissue either does not regenerate or does so at a slow rate. Therefore, tissue engineering has emerged as a potential treatment approach. This review discusses 3D bioprinting for scaffold manufacturing, highlights the advantages and disadvantages of common bioprinting techniques, describes important considerations for bioinks, biomaterial inks, and scaffolds, and discusses some drug delivery systems. The primary goal of this review is to bring attention to recent advances in nerve tissue engineering and its possible clinical applications in peripheral nerve, spinal cord, and cerebral nerve regeneration. Only studies that use 3D bioprinting or 3D printing to manufacture hydrogel scaffolds and incorporate the sustained release of a drug or growth factor for nerve regeneration are included. This review indicates that 3D printing is a fast and precise scaffold manufacturing technique but requires printing materials with specific properties to be effective in nervous tissue applications. The results indicate that the sustained release of certain drugs and growth factors from scaffolds can significantly improve post-printing cell viability, cell proliferation, adhesion, and differentiation, as well as functional recovery compared with scaffolds alone. However, more in vivo research needs to be conducted before this approach can be used in clinical applications.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":"116 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprinting of Hydrogel-Based Drug Delivery Systems for Nerve Tissue Regeneration\",\"authors\":\"Eliza Marie Steele, Zacheus L. Carr, E. Dosmar\",\"doi\":\"10.3390/biophysica4010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, thousands of people are affected by severe nerve injuries or neurodegenerative disorders. These conditions cannot always be cured because nerve tissue either does not regenerate or does so at a slow rate. Therefore, tissue engineering has emerged as a potential treatment approach. This review discusses 3D bioprinting for scaffold manufacturing, highlights the advantages and disadvantages of common bioprinting techniques, describes important considerations for bioinks, biomaterial inks, and scaffolds, and discusses some drug delivery systems. The primary goal of this review is to bring attention to recent advances in nerve tissue engineering and its possible clinical applications in peripheral nerve, spinal cord, and cerebral nerve regeneration. Only studies that use 3D bioprinting or 3D printing to manufacture hydrogel scaffolds and incorporate the sustained release of a drug or growth factor for nerve regeneration are included. This review indicates that 3D printing is a fast and precise scaffold manufacturing technique but requires printing materials with specific properties to be effective in nervous tissue applications. The results indicate that the sustained release of certain drugs and growth factors from scaffolds can significantly improve post-printing cell viability, cell proliferation, adhesion, and differentiation, as well as functional recovery compared with scaffolds alone. However, more in vivo research needs to be conducted before this approach can be used in clinical applications.\",\"PeriodicalId\":72401,\"journal\":{\"name\":\"Biophysica\",\"volume\":\"116 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biophysica4010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica4010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球有成千上万的人受到严重神经损伤或神经退行性疾病的影响。由于神经组织无法再生或再生速度缓慢,这些疾病并不总是可以治愈。因此,组织工程已成为一种潜在的治疗方法。本综述讨论了用于支架制造的三维生物打印技术,强调了常见生物打印技术的优缺点,介绍了生物墨水、生物材料墨水和支架的重要注意事项,并讨论了一些给药系统。本综述的主要目的是让人们关注神经组织工程的最新进展及其在周围神经、脊髓和脑神经再生方面可能的临床应用。只有使用三维生物打印或三维打印技术制造水凝胶支架并结合药物或生长因子的持续释放以促进神经再生的研究才被纳入其中。这篇综述指出,三维打印是一种快速、精确的支架制造技术,但需要打印材料具有特定的特性,才能在神经组织应用中有效。研究结果表明,与单独使用支架相比,从支架中持续释放某些药物和生长因子可显著提高打印后细胞的存活率、细胞增殖、粘附和分化能力以及功能恢复能力。不过,在将这种方法用于临床应用之前,还需要进行更多的体内研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioprinting of Hydrogel-Based Drug Delivery Systems for Nerve Tissue Regeneration
Globally, thousands of people are affected by severe nerve injuries or neurodegenerative disorders. These conditions cannot always be cured because nerve tissue either does not regenerate or does so at a slow rate. Therefore, tissue engineering has emerged as a potential treatment approach. This review discusses 3D bioprinting for scaffold manufacturing, highlights the advantages and disadvantages of common bioprinting techniques, describes important considerations for bioinks, biomaterial inks, and scaffolds, and discusses some drug delivery systems. The primary goal of this review is to bring attention to recent advances in nerve tissue engineering and its possible clinical applications in peripheral nerve, spinal cord, and cerebral nerve regeneration. Only studies that use 3D bioprinting or 3D printing to manufacture hydrogel scaffolds and incorporate the sustained release of a drug or growth factor for nerve regeneration are included. This review indicates that 3D printing is a fast and precise scaffold manufacturing technique but requires printing materials with specific properties to be effective in nervous tissue applications. The results indicate that the sustained release of certain drugs and growth factors from scaffolds can significantly improve post-printing cell viability, cell proliferation, adhesion, and differentiation, as well as functional recovery compared with scaffolds alone. However, more in vivo research needs to be conducted before this approach can be used in clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Melanin in the Retinal Epithelium and Magnetic Sensing: A Review of Current Studies. Anion Effect on Phase Separation of Polyethylene Glycol-8000–Sodium Salt Two-Phase Systems Intermolecular FRET Pairs as An Approach to Visualize Specific Enzyme Activity in Model Biomembranes and Living Cells Bay Laurel of Northern Morocco: A Comprehensive Analysis of Its Phytochemical Profile, Mineralogical Composition, and Antioxidant Potential Differential Scanning Calorimetry of Proteins and the Two-State Model: Comparison of Two Formulas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1