Yuling Zhang, Qingchao Tian, Deng Xuyan, Xiao Xu, Wang Guofu
{"title":"25Mn2 和 2Cr 钢在特定井下条件下的二氧化碳腐蚀行为","authors":"Yuling Zhang, Qingchao Tian, Deng Xuyan, Xiao Xu, Wang Guofu","doi":"10.1177/1478422x231212960","DOIUrl":null,"url":null,"abstract":"An economical 2Cr steel tubing was prepared for application in a certain downhole corrosion condition, and the CO2 corrosion behaviour was investigated by employing the 25Mn2 steel for comparative study. The corrosion films of the two steels under different corrosion conditions were analysed by optical microscope, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). It is revealed that the corrosion rate of 25Mn2 steel at static solution is about 2.5 times higher than that at the dynamic solution with the flow velocity of 1 m/s, while the corrosion rate of 2Cr steel keeps almost the same. It is found that both steels show two layers of corrosion film at static corrosion, and the corrosion film is mainly composed of FeCO3, α-FeOOH and dotted Fe3C in the inner layer. It is inferred that carbon pickup phenomenon observed in the corrosion film is attributed to the formation of FeCO3, as well as may also be due to phenomenologically the reaction of Fe3C with carbonic acid.","PeriodicalId":517061,"journal":{"name":"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CO2 corrosion behaviour of 25Mn2 and 2Cr steels under certain downhole condition\",\"authors\":\"Yuling Zhang, Qingchao Tian, Deng Xuyan, Xiao Xu, Wang Guofu\",\"doi\":\"10.1177/1478422x231212960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An economical 2Cr steel tubing was prepared for application in a certain downhole corrosion condition, and the CO2 corrosion behaviour was investigated by employing the 25Mn2 steel for comparative study. The corrosion films of the two steels under different corrosion conditions were analysed by optical microscope, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). It is revealed that the corrosion rate of 25Mn2 steel at static solution is about 2.5 times higher than that at the dynamic solution with the flow velocity of 1 m/s, while the corrosion rate of 2Cr steel keeps almost the same. It is found that both steels show two layers of corrosion film at static corrosion, and the corrosion film is mainly composed of FeCO3, α-FeOOH and dotted Fe3C in the inner layer. It is inferred that carbon pickup phenomenon observed in the corrosion film is attributed to the formation of FeCO3, as well as may also be due to phenomenologically the reaction of Fe3C with carbonic acid.\",\"PeriodicalId\":517061,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control\",\"volume\":\"2 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1478422x231212960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1478422x231212960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The CO2 corrosion behaviour of 25Mn2 and 2Cr steels under certain downhole condition
An economical 2Cr steel tubing was prepared for application in a certain downhole corrosion condition, and the CO2 corrosion behaviour was investigated by employing the 25Mn2 steel for comparative study. The corrosion films of the two steels under different corrosion conditions were analysed by optical microscope, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). It is revealed that the corrosion rate of 25Mn2 steel at static solution is about 2.5 times higher than that at the dynamic solution with the flow velocity of 1 m/s, while the corrosion rate of 2Cr steel keeps almost the same. It is found that both steels show two layers of corrosion film at static corrosion, and the corrosion film is mainly composed of FeCO3, α-FeOOH and dotted Fe3C in the inner layer. It is inferred that carbon pickup phenomenon observed in the corrosion film is attributed to the formation of FeCO3, as well as may also be due to phenomenologically the reaction of Fe3C with carbonic acid.