中学量子教育的核心:多方利益相关者的视角

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2024-04-08 DOI:10.1140/epjqt/s40507-024-00237-x
Avraham Merzel, Philipp Bitzenbauer, Kim Krijtenburg-Lewerissa, Kirsten Stadermann, Erica Andreotti, Daria Anttila, Maria Bondani, Maria Luisa (Marilù) Chiofalo, Sergej Faletič, Renaat Frans, Simon Goorney, Franziska Greinert, Leon Jurčić, Zdeňka Koupilová, Massimiliano Malgieri, Rainer Müller, Pasquale Onorato, Gesche Pospiech, Malte Ubben, Andreas Woitzik, Henk Pol
{"title":"中学量子教育的核心:多方利益相关者的视角","authors":"Avraham Merzel,&nbsp;Philipp Bitzenbauer,&nbsp;Kim Krijtenburg-Lewerissa,&nbsp;Kirsten Stadermann,&nbsp;Erica Andreotti,&nbsp;Daria Anttila,&nbsp;Maria Bondani,&nbsp;Maria Luisa (Marilù) Chiofalo,&nbsp;Sergej Faletič,&nbsp;Renaat Frans,&nbsp;Simon Goorney,&nbsp;Franziska Greinert,&nbsp;Leon Jurčić,&nbsp;Zdeňka Koupilová,&nbsp;Massimiliano Malgieri,&nbsp;Rainer Müller,&nbsp;Pasquale Onorato,&nbsp;Gesche Pospiech,&nbsp;Malte Ubben,&nbsp;Andreas Woitzik,&nbsp;Henk Pol","doi":"10.1140/epjqt/s40507-024-00237-x","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of <span>\\(N= 39\\)</span> high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00237-x","citationCount":"0","resultStr":"{\"title\":\"The core of secondary level quantum education: a multi-stakeholder perspective\",\"authors\":\"Avraham Merzel,&nbsp;Philipp Bitzenbauer,&nbsp;Kim Krijtenburg-Lewerissa,&nbsp;Kirsten Stadermann,&nbsp;Erica Andreotti,&nbsp;Daria Anttila,&nbsp;Maria Bondani,&nbsp;Maria Luisa (Marilù) Chiofalo,&nbsp;Sergej Faletič,&nbsp;Renaat Frans,&nbsp;Simon Goorney,&nbsp;Franziska Greinert,&nbsp;Leon Jurčić,&nbsp;Zdeňka Koupilová,&nbsp;Massimiliano Malgieri,&nbsp;Rainer Müller,&nbsp;Pasquale Onorato,&nbsp;Gesche Pospiech,&nbsp;Malte Ubben,&nbsp;Andreas Woitzik,&nbsp;Henk Pol\",\"doi\":\"10.1140/epjqt/s40507-024-00237-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of <span>\\\\(N= 39\\\\)</span> high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00237-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00237-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00237-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

中学量子物理(QP)教育仍处于起步阶段。不仅关于如何教授这门课程的讨论仍在继续,而且在选择要教授的概念方面也缺乏一致性,这在不同国家和不同时期都是如此。为了促进这一讨论,我们调查了高中教师、大学物理教育者和物理教育研究者对中学阶段应引入的素质教育基本概念和相应插图的看法。我们研究了不同关键概念和插图的显著性,以及不同专业群体之间的共识程度。我们的分析表明,某些关键概念在所有专业群体中都受到普遍重视,而另一些则是特定群体所特有的。此外,我们还探讨了这些关键概念与其相应图示之间的关系。总之,我们的研究为了解不同利益相关者的观点提供了有价值的见解,强调了在中学设计和实施素质教育教学时应考虑的基本概念和可视化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The core of secondary level quantum education: a multi-stakeholder perspective

Quantum physics (QP) education at the secondary school level is still in its infancy. Not only is there ongoing discussion about how to teach this subject, but there is also a lack of coherence in the selection of concepts to be taught, both across countries and over time. To contribute to this discussion, we investigated the perspectives of \(N= 39\) high school teachers, university-level physics educators, and physics education researchers regarding the essential concepts in QP and the corresponding illustrations that should be introduced at the secondary school level. We examined the prominence of different key concepts and illustrations, as well as the level of consensus among the various professional groups. Our analysis revealed that certain key concepts are universally valued across all professional groups, while others are specific to particular groups. Additionally, we explored the relationships between these key concepts and their corresponding illustrations. Overall, our study offers valuable insights into the perspectives of different stakeholders, emphasizing the essential concepts and visualizations that should be considered when designing and implementing the teaching of QP at the secondary school level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
Experimental demonstration of quantum encryption in phase space with displacement operator in coherent optical communications Optical payload design for downlink quantum key distribution and keyless communication using CubeSats On validity of quantum partial adiabatic search Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states Synergy between noisy quantum computers and scalable classical deep learning for quantum error mitigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1