Moein Qaisari Hasan Abadi , Russell Sadeghi , Ava Hajian , Omid Shahvari , Amirehsan Ghasemi
{"title":"基于区块链的动态能源定价模型,利用机器学习提高供应链弹性","authors":"Moein Qaisari Hasan Abadi , Russell Sadeghi , Ava Hajian , Omid Shahvari , Amirehsan Ghasemi","doi":"10.1016/j.sca.2024.100066","DOIUrl":null,"url":null,"abstract":"<div><p>The escalation of energy prices and the pressing environmental concerns associated with excessive energy consumption have compelled consumers to adopt a more optimal approach towards energy usage and an advanced infrastructure such as smart grids. Blockchain technology significantly improves energy management by creating supply chain resiliency in a distributed smart grid. This study proposes a blockchain-based decision-making framework with a dynamic energy pricing model to manage energy distributions, particularly during an energy crisis. Empirical data from U.S. consumers are employed to show the applicability of the proposed model. We include price elasticity to address changes in energy market prices. Findings revealed that the proposed framework reduces total energy costs and performs better when a disruption has occurred. This study provides a post hoc analysis in which four machine learning algorithms are used to predict energy consumption. Results suggest that the autoregressive integrated moving average (ARIMA) algorithm has the highest accuracy compared to other algorithms.</p></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"6 ","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949863524000098/pdfft?md5=5299e76a1695033b1485c6213eeb968c&pid=1-s2.0-S2949863524000098-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A blockchain-based dynamic energy pricing model for supply chain resiliency using machine learning\",\"authors\":\"Moein Qaisari Hasan Abadi , Russell Sadeghi , Ava Hajian , Omid Shahvari , Amirehsan Ghasemi\",\"doi\":\"10.1016/j.sca.2024.100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The escalation of energy prices and the pressing environmental concerns associated with excessive energy consumption have compelled consumers to adopt a more optimal approach towards energy usage and an advanced infrastructure such as smart grids. Blockchain technology significantly improves energy management by creating supply chain resiliency in a distributed smart grid. This study proposes a blockchain-based decision-making framework with a dynamic energy pricing model to manage energy distributions, particularly during an energy crisis. Empirical data from U.S. consumers are employed to show the applicability of the proposed model. We include price elasticity to address changes in energy market prices. Findings revealed that the proposed framework reduces total energy costs and performs better when a disruption has occurred. This study provides a post hoc analysis in which four machine learning algorithms are used to predict energy consumption. Results suggest that the autoregressive integrated moving average (ARIMA) algorithm has the highest accuracy compared to other algorithms.</p></div>\",\"PeriodicalId\":101186,\"journal\":{\"name\":\"Supply Chain Analytics\",\"volume\":\"6 \",\"pages\":\"Article 100066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949863524000098/pdfft?md5=5299e76a1695033b1485c6213eeb968c&pid=1-s2.0-S2949863524000098-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supply Chain Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949863524000098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863524000098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A blockchain-based dynamic energy pricing model for supply chain resiliency using machine learning
The escalation of energy prices and the pressing environmental concerns associated with excessive energy consumption have compelled consumers to adopt a more optimal approach towards energy usage and an advanced infrastructure such as smart grids. Blockchain technology significantly improves energy management by creating supply chain resiliency in a distributed smart grid. This study proposes a blockchain-based decision-making framework with a dynamic energy pricing model to manage energy distributions, particularly during an energy crisis. Empirical data from U.S. consumers are employed to show the applicability of the proposed model. We include price elasticity to address changes in energy market prices. Findings revealed that the proposed framework reduces total energy costs and performs better when a disruption has occurred. This study provides a post hoc analysis in which four machine learning algorithms are used to predict energy consumption. Results suggest that the autoregressive integrated moving average (ARIMA) algorithm has the highest accuracy compared to other algorithms.