基于高斯分布的果蝇优化算法设计及其在图像处理中的应用

Huiying Jia
{"title":"基于高斯分布的果蝇优化算法设计及其在图像处理中的应用","authors":"Huiying Jia","doi":"10.1016/j.sasc.2024.200090","DOIUrl":null,"url":null,"abstract":"<div><p>The Fruit Fly Optimization Algorithm (FOA) has strong applicability, which can be optimized directly after the objective is determined not by building a complex model. Due to the problems of the algorithm such as easy prematureness, low solution accuracy, and easy to fall into local optimality. Therefore, the Gaussian Distribution Fruit Fly Optimization Algorithm (GaussFOA) based on Gaussian distribution was first proposed to solve the shortcomings of FOA. Then GaussFOA was applied to image segmentation processing. Finally, the experimental results were compared with FOA, the improved Fruit Fly Optimization Algorithm with Changing Step and Strategy (CSSFOA), and the Linear Generation Mechanism of Candidate Solution of Fruit Fly Optimization Algorithm (LGMSFOA). The results showed that GaussFOA had 100 % success rate compared with FOA, CSSFOA, and LGMSFOA under the same function. This algorithm also had the best finding mean and standard deviation. The low and high threshold division was compared in terms of the number of segmentation thresholds. The GaussFOA had the best value of both the average and the standard deviation of the search for merit. The segmentation results under high threshold were more obvious when compared with the segmentation results of low threshold GaussFOA. The image immunity of GaussFOA was 8.57 %, 10 %, and 29.97 % higher than that of FOA, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). This indicated that the model constructed based on GaussFOA had improved the image segmentation effect and stability compared with other algorithms. The findings of the research can offer a new path for the processing techniques of images.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200090"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277294192400019X/pdfft?md5=524fc28108ade5ccd6d627a5636840e6&pid=1-s2.0-S277294192400019X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of fruit fly optimization algorithm based on Gaussian distribution and its application to image processing\",\"authors\":\"Huiying Jia\",\"doi\":\"10.1016/j.sasc.2024.200090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Fruit Fly Optimization Algorithm (FOA) has strong applicability, which can be optimized directly after the objective is determined not by building a complex model. Due to the problems of the algorithm such as easy prematureness, low solution accuracy, and easy to fall into local optimality. Therefore, the Gaussian Distribution Fruit Fly Optimization Algorithm (GaussFOA) based on Gaussian distribution was first proposed to solve the shortcomings of FOA. Then GaussFOA was applied to image segmentation processing. Finally, the experimental results were compared with FOA, the improved Fruit Fly Optimization Algorithm with Changing Step and Strategy (CSSFOA), and the Linear Generation Mechanism of Candidate Solution of Fruit Fly Optimization Algorithm (LGMSFOA). The results showed that GaussFOA had 100 % success rate compared with FOA, CSSFOA, and LGMSFOA under the same function. This algorithm also had the best finding mean and standard deviation. The low and high threshold division was compared in terms of the number of segmentation thresholds. The GaussFOA had the best value of both the average and the standard deviation of the search for merit. The segmentation results under high threshold were more obvious when compared with the segmentation results of low threshold GaussFOA. The image immunity of GaussFOA was 8.57 %, 10 %, and 29.97 % higher than that of FOA, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). This indicated that the model constructed based on GaussFOA had improved the image segmentation effect and stability compared with other algorithms. The findings of the research can offer a new path for the processing techniques of images.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200090\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277294192400019X/pdfft?md5=524fc28108ade5ccd6d627a5636840e6&pid=1-s2.0-S277294192400019X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294192400019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294192400019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

果蝇优化算法(FOA)具有很强的适用性,它可以在目标确定后直接进行优化,而不需要建立复杂的模型。由于该算法存在易早熟、求解精度低、易陷入局部最优等问题。因此,首先提出了基于高斯分布的高斯分布果蝇优化算法(Gaussian Distribution Fruit Fly Optimization Algorithm,GaussFOA)来解决 FOA 的缺点。然后,将 GaussFOA 应用于图像分割处理。最后,实验结果与 FOA、改进的改变步骤和策略的果蝇优化算法(CSSFOA)和果蝇优化算法候选解的线性生成机制(LGMSFOA)进行了比较。结果表明,在相同函数下,高斯FOA与FOA、CSSFOA和LGMSFOA相比,成功率均为100%。该算法的平均值和标准偏差也最好。在分割阈值数方面,对低阈值和高阈值划分进行了比较。GaussFOA 的搜索平均值和标准偏差都是最好的。与低阈值 GaussFOA 的分割结果相比,高阈值下的分割结果更为明显。与 FOA、粒子群优化(PSO)和遗传算法(GA)相比,GaussFOA 的图像抗干扰度分别高出 8.57%、10% 和 29.97%。这表明,与其他算法相比,基于高斯FOA构建的模型提高了图像分割效果和稳定性。该研究成果可为图像处理技术提供一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of fruit fly optimization algorithm based on Gaussian distribution and its application to image processing

The Fruit Fly Optimization Algorithm (FOA) has strong applicability, which can be optimized directly after the objective is determined not by building a complex model. Due to the problems of the algorithm such as easy prematureness, low solution accuracy, and easy to fall into local optimality. Therefore, the Gaussian Distribution Fruit Fly Optimization Algorithm (GaussFOA) based on Gaussian distribution was first proposed to solve the shortcomings of FOA. Then GaussFOA was applied to image segmentation processing. Finally, the experimental results were compared with FOA, the improved Fruit Fly Optimization Algorithm with Changing Step and Strategy (CSSFOA), and the Linear Generation Mechanism of Candidate Solution of Fruit Fly Optimization Algorithm (LGMSFOA). The results showed that GaussFOA had 100 % success rate compared with FOA, CSSFOA, and LGMSFOA under the same function. This algorithm also had the best finding mean and standard deviation. The low and high threshold division was compared in terms of the number of segmentation thresholds. The GaussFOA had the best value of both the average and the standard deviation of the search for merit. The segmentation results under high threshold were more obvious when compared with the segmentation results of low threshold GaussFOA. The image immunity of GaussFOA was 8.57 %, 10 %, and 29.97 % higher than that of FOA, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). This indicated that the model constructed based on GaussFOA had improved the image segmentation effect and stability compared with other algorithms. The findings of the research can offer a new path for the processing techniques of images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A systematic assessment of sentiment analysis models on iraqi dialect-based texts Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries Analyzing the quality evaluation of college English teaching based on probabilistic linguistic multiple-attribute group decision-making Interior design assistant algorithm based on indoor scene analysis Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1