Christopher M. Roper, Chris M. Fancher, Jeffrey R. Bunn, Luke N. Brewer
{"title":"通过中子衍射测量冷喷 SS304L 的残余应力并比较预测残余应力的分析模型","authors":"Christopher M. Roper, Chris M. Fancher, Jeffrey R. Bunn, Luke N. Brewer","doi":"10.1007/s11665-024-09422-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs neutron diffraction to investigate the relationship between residual stress and coating thickness in cold sprayed 304L austenitic stainless steel. Results show that shot peening predominantly impacts the residual stress profile, leading to substantial in-plane compressive force. The impact of laser heating, a widely used method to alter cold spray's microstructural properties, on the coating's residual stress is also analyzed. The findings indicate that the maximum compressive residual stress in the in-plane component is mainly independent of coating thickness, which suggests that the material properties determine the maximum residual stress. The cold sprayed deposits possessed compressive, nearly biaxial strain and stresses. After laser heating, these stresses were replaced by tensile residual stresses. Two analytical models, the Tsui and Clyne and the Boruah models, for predicting residual stresses are also evaluated, and both models provide reasonable fits to the experimental data. At this point, the deviations between the experimental results and the models are principally caused by the inability of the current models to address plastic deformation and relaxation, and the residual stresses generated by thermal gradients.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 and Control","pages":"7626 - 7637"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Stress in Cold Spray SS304L Measured Via Neutron Diffraction and Comparison of Analytical Models to Predict the Residual Stress\",\"authors\":\"Christopher M. Roper, Chris M. Fancher, Jeffrey R. Bunn, Luke N. Brewer\",\"doi\":\"10.1007/s11665-024-09422-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study employs neutron diffraction to investigate the relationship between residual stress and coating thickness in cold sprayed 304L austenitic stainless steel. Results show that shot peening predominantly impacts the residual stress profile, leading to substantial in-plane compressive force. The impact of laser heating, a widely used method to alter cold spray's microstructural properties, on the coating's residual stress is also analyzed. The findings indicate that the maximum compressive residual stress in the in-plane component is mainly independent of coating thickness, which suggests that the material properties determine the maximum residual stress. The cold sprayed deposits possessed compressive, nearly biaxial strain and stresses. After laser heating, these stresses were replaced by tensile residual stresses. Two analytical models, the Tsui and Clyne and the Boruah models, for predicting residual stresses are also evaluated, and both models provide reasonable fits to the experimental data. At this point, the deviations between the experimental results and the models are principally caused by the inability of the current models to address plastic deformation and relaxation, and the residual stresses generated by thermal gradients.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 and Control\",\"pages\":\"7626 - 7637\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-024-09422-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-09422-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Residual Stress in Cold Spray SS304L Measured Via Neutron Diffraction and Comparison of Analytical Models to Predict the Residual Stress
This study employs neutron diffraction to investigate the relationship between residual stress and coating thickness in cold sprayed 304L austenitic stainless steel. Results show that shot peening predominantly impacts the residual stress profile, leading to substantial in-plane compressive force. The impact of laser heating, a widely used method to alter cold spray's microstructural properties, on the coating's residual stress is also analyzed. The findings indicate that the maximum compressive residual stress in the in-plane component is mainly independent of coating thickness, which suggests that the material properties determine the maximum residual stress. The cold sprayed deposits possessed compressive, nearly biaxial strain and stresses. After laser heating, these stresses were replaced by tensile residual stresses. Two analytical models, the Tsui and Clyne and the Boruah models, for predicting residual stresses are also evaluated, and both models provide reasonable fits to the experimental data. At this point, the deviations between the experimental results and the models are principally caused by the inability of the current models to address plastic deformation and relaxation, and the residual stresses generated by thermal gradients.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered