{"title":"低功耗训练场景下室内定位的在线 RSSI 选择策略","authors":"Braulio Pinto, Horacio Oliveira","doi":"10.1007/s00607-024-01285-y","DOIUrl":null,"url":null,"abstract":"<p>Indoor positioning has been extensively studied for at least the past twenty years. In the list of the most common solutions, those based on the Received Strength Signal Indicator (RSSI) have gained importance due to the simplicity of RSSI as well as the fact that it is available in several wireless sensor networks. In this work, we propose SeALS (<b>Se</b>lection Strategy of <b>A</b>ccess Points with <b>L</b>east <b>S</b>quares Estimation), a new RSSI-based indoor positioning system using Bluetooth Low-Energy (BLE) access points, whose accuracy is improved by a new selection strategy of collected RSSI combined with the Ordinary Least Squares (OLS) estimation method. The main advantage of the proposed solution is the fact that it requires less time in the training phase allied with better system accuracy if compared to traditional methods. The proposed system is validated in a large-scale, real-world scenario, and the obtained results for the positioning error are reduced by up to 13% concerning the pure OLS method, and by up to 30% concerning the widely deployed K-Nearest Neighbors technique.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"108 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online RSSI selection strategy for indoor positioning in low-effort training scenarios\",\"authors\":\"Braulio Pinto, Horacio Oliveira\",\"doi\":\"10.1007/s00607-024-01285-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indoor positioning has been extensively studied for at least the past twenty years. In the list of the most common solutions, those based on the Received Strength Signal Indicator (RSSI) have gained importance due to the simplicity of RSSI as well as the fact that it is available in several wireless sensor networks. In this work, we propose SeALS (<b>Se</b>lection Strategy of <b>A</b>ccess Points with <b>L</b>east <b>S</b>quares Estimation), a new RSSI-based indoor positioning system using Bluetooth Low-Energy (BLE) access points, whose accuracy is improved by a new selection strategy of collected RSSI combined with the Ordinary Least Squares (OLS) estimation method. The main advantage of the proposed solution is the fact that it requires less time in the training phase allied with better system accuracy if compared to traditional methods. The proposed system is validated in a large-scale, real-world scenario, and the obtained results for the positioning error are reduced by up to 13% concerning the pure OLS method, and by up to 30% concerning the widely deployed K-Nearest Neighbors technique.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01285-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01285-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Online RSSI selection strategy for indoor positioning in low-effort training scenarios
Indoor positioning has been extensively studied for at least the past twenty years. In the list of the most common solutions, those based on the Received Strength Signal Indicator (RSSI) have gained importance due to the simplicity of RSSI as well as the fact that it is available in several wireless sensor networks. In this work, we propose SeALS (Selection Strategy of Access Points with Least Squares Estimation), a new RSSI-based indoor positioning system using Bluetooth Low-Energy (BLE) access points, whose accuracy is improved by a new selection strategy of collected RSSI combined with the Ordinary Least Squares (OLS) estimation method. The main advantage of the proposed solution is the fact that it requires less time in the training phase allied with better system accuracy if compared to traditional methods. The proposed system is validated in a large-scale, real-world scenario, and the obtained results for the positioning error are reduced by up to 13% concerning the pure OLS method, and by up to 30% concerning the widely deployed K-Nearest Neighbors technique.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.