构建特征和识别与二硫化相关的分子集群,更好地预测胶质瘤预后

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Neuroscience Pub Date : 2024-04-04 DOI:10.1007/s12031-024-02216-4
Yekun Zhuang, Jiewen Chen, Zhuohao Mai, Wanting Huang, Wenyu Zhong
{"title":"构建特征和识别与二硫化相关的分子集群,更好地预测胶质瘤预后","authors":"Yekun Zhuang,&nbsp;Jiewen Chen,&nbsp;Zhuohao Mai,&nbsp;Wanting Huang,&nbsp;Wenyu Zhong","doi":"10.1007/s12031-024-02216-4","DOIUrl":null,"url":null,"abstract":"<div><p>Disulfidptosis is a newly discovered form of regulatory cell death. However, the identification of disulfidptosis-related molecular subtypes and potential biomarkers in gliomas and their prognostic predictive potential need to be further elucidated. RNA sequencing profiles and the relevant clinical data were obtained from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Disulfidptosis-related clusters were identified by unsupervised clustering analysis. Immune cell infiltration analysis and drug sensitivity analysis were used to explore the differences between clusters. Gene set enrichment analysis (GSEA) of differential genes between clusters was performed to explore the potential biological functions and signaling. A disulfidptosis-related scoring system (DRSS) was constructed based on a combined COX and LASSO analysis. Mendelian randomization (MR) analyses were used to further explore the causal relationship between levels of genes in DRSS and an increased risk of glioma. A prognosis nomogram was constructed based on the DRSS and 3 clinical features (age, WHO stage, and IDH status). The accuracy and stability of the prognosis nomogram were also validated in different cohorts. We identified two clusters that exhibited different prognoses, drug sensitivity profiles, and tumor microenvironment infiltration profiles. The overall survival (OS) of Cluster2 was significantly better than Cluster1. Cluster1 had an overall greater infiltration of immune cells compared to Cluster2. However, the Monocytes, activated B cells had higher infiltration abundance in Cluster2. GSEA results showed significant enrichment of immune-related biological processes in Cluster1, while Cluster2 was more enriched for functions related to neurotransmission and regulation. PER3, RAB34, NKX3-2, GPX7, FRA10AC1, and TGIF1 were finally included to construct DRSS. DRSS was independently related to prognosis. There was a significant difference in overall survival between the low-risk score group and the high-risk score group. Among six genes in DRSS, GPX7 levels were demonstrated to have a causal relationship with an increased risk of glioma. GPX7 may become a more promising biomarker for gliomas. The prognosis nomogram constructed based on the DRSS and three clinical features has considerable potential for predicting the prognosis of patients with glioma. Free online software for implementing this nomogram was established: https://yekun-zhuang.shinyapps.io/DynNomapp/. Our study established a novel glioma classification based on the disulfidptosis-related molecular subtypes. We constructed the DRSS and the prognosis nomogram to accurately stratify the prognosis of glioma patients. GPX7 was identified as a more promising biomarker for glioma. We provide important insights into the treatment and prognosis of gliomas.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signature Construction and Disulfidptosis-Related Molecular Cluster Identification for Better Prediction of Prognosis in Glioma\",\"authors\":\"Yekun Zhuang,&nbsp;Jiewen Chen,&nbsp;Zhuohao Mai,&nbsp;Wanting Huang,&nbsp;Wenyu Zhong\",\"doi\":\"10.1007/s12031-024-02216-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Disulfidptosis is a newly discovered form of regulatory cell death. However, the identification of disulfidptosis-related molecular subtypes and potential biomarkers in gliomas and their prognostic predictive potential need to be further elucidated. RNA sequencing profiles and the relevant clinical data were obtained from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Disulfidptosis-related clusters were identified by unsupervised clustering analysis. Immune cell infiltration analysis and drug sensitivity analysis were used to explore the differences between clusters. Gene set enrichment analysis (GSEA) of differential genes between clusters was performed to explore the potential biological functions and signaling. A disulfidptosis-related scoring system (DRSS) was constructed based on a combined COX and LASSO analysis. Mendelian randomization (MR) analyses were used to further explore the causal relationship between levels of genes in DRSS and an increased risk of glioma. A prognosis nomogram was constructed based on the DRSS and 3 clinical features (age, WHO stage, and IDH status). The accuracy and stability of the prognosis nomogram were also validated in different cohorts. We identified two clusters that exhibited different prognoses, drug sensitivity profiles, and tumor microenvironment infiltration profiles. The overall survival (OS) of Cluster2 was significantly better than Cluster1. Cluster1 had an overall greater infiltration of immune cells compared to Cluster2. However, the Monocytes, activated B cells had higher infiltration abundance in Cluster2. GSEA results showed significant enrichment of immune-related biological processes in Cluster1, while Cluster2 was more enriched for functions related to neurotransmission and regulation. PER3, RAB34, NKX3-2, GPX7, FRA10AC1, and TGIF1 were finally included to construct DRSS. DRSS was independently related to prognosis. There was a significant difference in overall survival between the low-risk score group and the high-risk score group. Among six genes in DRSS, GPX7 levels were demonstrated to have a causal relationship with an increased risk of glioma. GPX7 may become a more promising biomarker for gliomas. The prognosis nomogram constructed based on the DRSS and three clinical features has considerable potential for predicting the prognosis of patients with glioma. Free online software for implementing this nomogram was established: https://yekun-zhuang.shinyapps.io/DynNomapp/. Our study established a novel glioma classification based on the disulfidptosis-related molecular subtypes. We constructed the DRSS and the prognosis nomogram to accurately stratify the prognosis of glioma patients. GPX7 was identified as a more promising biomarker for glioma. We provide important insights into the treatment and prognosis of gliomas.</p></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"74 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-024-02216-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02216-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 二硫化硫是一种新发现的调节性细胞死亡形式。然而,胶质瘤中与二硫化相关的分子亚型和潜在生物标志物的鉴定及其预后预测潜力有待进一步阐明。我们从癌症基因组图谱(TCGA)和中国胶质瘤基因组图谱(CGGA)中获得了RNA测序图谱和相关临床数据。通过无监督聚类分析确定了与二硫化相关的群组。免疫细胞浸润分析和药物敏感性分析用于探究聚类之间的差异。对聚类间的差异基因进行了基因组富集分析(GSEA),以探索潜在的生物功能和信号转导。基于COX和LASSO联合分析,构建了二硫化相关评分系统(DRSS)。孟德尔随机化(MR)分析用于进一步探讨 DRSS 中基因水平与胶质瘤风险增加之间的因果关系。根据 DRSS 和 3 个临床特征(年龄、WHO 分期和 IDH 状态)构建了预后提名图。预后提名图的准确性和稳定性也在不同的队列中得到了验证。我们发现了两个表现出不同预后、药物敏感性特征和肿瘤微环境浸润特征的群组。群组2的总生存期(OS)明显优于群组1。与组群2相比,组群1的免疫细胞浸润总体上更多。然而,Cluster2中单核细胞、活化B细胞的浸润丰度更高。GSEA 结果显示,免疫相关的生物过程在 Cluster1 中明显富集,而 Cluster2 则更多地富集了与神经传递和调节相关的功能。最后,PER3、RAB34、NKX3-2、GPX7、FRA10AC1 和 TGIF1 被纳入 DRSS。DRSS与预后独立相关。低风险评分组与高风险评分组的总生存率存在明显差异。在 DRSS 的六个基因中,GPX7 的水平被证实与胶质瘤风险的增加有因果关系。GPX7可能会成为一种更有前景的胶质瘤生物标志物。根据 DRSS 和三个临床特征构建的预后提名图在预测胶质瘤患者的预后方面具有相当大的潜力。用于实施该预后提名图的免费在线软件已经建立:https://yekun-zhuang.shinyapps.io/DynNomapp/。我们的研究建立了一种基于二硫化相关分子亚型的新型胶质瘤分类。我们构建了 DRSS 和预后提名图,以准确地对胶质瘤患者的预后进行分层。GPX7被确定为胶质瘤更有希望的生物标记物。我们为胶质瘤的治疗和预后提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signature Construction and Disulfidptosis-Related Molecular Cluster Identification for Better Prediction of Prognosis in Glioma

Disulfidptosis is a newly discovered form of regulatory cell death. However, the identification of disulfidptosis-related molecular subtypes and potential biomarkers in gliomas and their prognostic predictive potential need to be further elucidated. RNA sequencing profiles and the relevant clinical data were obtained from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Disulfidptosis-related clusters were identified by unsupervised clustering analysis. Immune cell infiltration analysis and drug sensitivity analysis were used to explore the differences between clusters. Gene set enrichment analysis (GSEA) of differential genes between clusters was performed to explore the potential biological functions and signaling. A disulfidptosis-related scoring system (DRSS) was constructed based on a combined COX and LASSO analysis. Mendelian randomization (MR) analyses were used to further explore the causal relationship between levels of genes in DRSS and an increased risk of glioma. A prognosis nomogram was constructed based on the DRSS and 3 clinical features (age, WHO stage, and IDH status). The accuracy and stability of the prognosis nomogram were also validated in different cohorts. We identified two clusters that exhibited different prognoses, drug sensitivity profiles, and tumor microenvironment infiltration profiles. The overall survival (OS) of Cluster2 was significantly better than Cluster1. Cluster1 had an overall greater infiltration of immune cells compared to Cluster2. However, the Monocytes, activated B cells had higher infiltration abundance in Cluster2. GSEA results showed significant enrichment of immune-related biological processes in Cluster1, while Cluster2 was more enriched for functions related to neurotransmission and regulation. PER3, RAB34, NKX3-2, GPX7, FRA10AC1, and TGIF1 were finally included to construct DRSS. DRSS was independently related to prognosis. There was a significant difference in overall survival between the low-risk score group and the high-risk score group. Among six genes in DRSS, GPX7 levels were demonstrated to have a causal relationship with an increased risk of glioma. GPX7 may become a more promising biomarker for gliomas. The prognosis nomogram constructed based on the DRSS and three clinical features has considerable potential for predicting the prognosis of patients with glioma. Free online software for implementing this nomogram was established: https://yekun-zhuang.shinyapps.io/DynNomapp/. Our study established a novel glioma classification based on the disulfidptosis-related molecular subtypes. We constructed the DRSS and the prognosis nomogram to accurately stratify the prognosis of glioma patients. GPX7 was identified as a more promising biomarker for glioma. We provide important insights into the treatment and prognosis of gliomas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
期刊最新文献
Valproate Administration to Adult 5xFAD Mice Upregulates Expression of Neprilysin and Improves Olfaction and Memory Investigation of Association Between Expression of DYX1C1, KIAA0319, and ROBO1 Genes and Specific Learning Disorder in Children and Adolescents Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy Antisecretory Factor 16 (AF16): A Promising Avenue for the Treatment of Traumatic Brain Injury—An In Vitro Model Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1