利用增量 k-Means++ 初始化对 k-Medois 聚类进行仔细播种

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Circuits Systems and Computers Pub Date : 2024-04-13 DOI:10.1142/s0218126624501846
Difei Cheng, Yunfeng Zhang, Ruinan Jin
{"title":"利用增量 k-Means++ 初始化对 k-Medois 聚类进行仔细播种","authors":"Difei Cheng, Yunfeng Zhang, Ruinan Jin","doi":"10.1142/s0218126624501846","DOIUrl":null,"url":null,"abstract":"<p><span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-medoids clustering is a popular variant of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-means clustering and widely used in pattern recognition and machine learning. A main drawback of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering is that an improper initialization can cause it to get trapped in local optima. An improved <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering algorithm, called INCKM algorithm, which is the first to apply incremental initialization to <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering, was recently proposed to overcome this drawback. The INCKM algorithm requires the construction of a subset of candidate medoids determined by one hyperparameter for initialization, and meanwhile, it always fails when dealing with imbalanced datasets with an incorrect hyperparameter selection. In this paper, we propose a novel <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-medoids clustering algorithm, called incremental <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-means++ (INCKPP) algorithm, which initializes with a novel incremental manner, attempting to optimally add one new cluster center at each stage through a non-parametric and stochastic <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-means++ initialization. The INCKPP algorithm overcomes the difficulty of hyperparameter selection in the INCKM algorithm, improves the clustering performance, and can deal with imbalanced datasets well. However, the INCKPP algorithm is not computationally efficient enough. To deal with this, we further propose an improved INCKPP algorithm, called INCKPP<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mstyle mathvariant=\"bold\"><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi></mstyle></mrow></msub></math></span><span></span> algorithm which improves the clustering efficiency while maintaining the clustering performance of the INCKPP algorithm. Extensive results from experiments on both synthetic and real-world datasets, including imbalanced datasets, illustrate that the proposed algorithms outperforms than the other compared algorithms.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Careful Seeding for k-Medois Clustering with Incremental k-Means++ Initialization\",\"authors\":\"Difei Cheng, Yunfeng Zhang, Ruinan Jin\",\"doi\":\"10.1142/s0218126624501846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-medoids clustering is a popular variant of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-means clustering and widely used in pattern recognition and machine learning. A main drawback of <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-medoids clustering is that an improper initialization can cause it to get trapped in local optima. An improved <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-medoids clustering algorithm, called INCKM algorithm, which is the first to apply incremental initialization to <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-medoids clustering, was recently proposed to overcome this drawback. The INCKM algorithm requires the construction of a subset of candidate medoids determined by one hyperparameter for initialization, and meanwhile, it always fails when dealing with imbalanced datasets with an incorrect hyperparameter selection. In this paper, we propose a novel <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-medoids clustering algorithm, called incremental <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-means++ (INCKPP) algorithm, which initializes with a novel incremental manner, attempting to optimally add one new cluster center at each stage through a non-parametric and stochastic <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span>-means++ initialization. The INCKPP algorithm overcomes the difficulty of hyperparameter selection in the INCKM algorithm, improves the clustering performance, and can deal with imbalanced datasets well. However, the INCKPP algorithm is not computationally efficient enough. To deal with this, we further propose an improved INCKPP algorithm, called INCKPP<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mstyle mathvariant=\\\"bold\\\"><mi>s</mi><mi>a</mi><mi>m</mi><mi>p</mi><mi>l</mi><mi>e</mi></mstyle></mrow></msub></math></span><span></span> algorithm which improves the clustering efficiency while maintaining the clustering performance of the INCKPP algorithm. Extensive results from experiments on both synthetic and real-world datasets, including imbalanced datasets, illustrate that the proposed algorithms outperforms than the other compared algorithms.</p>\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624501846\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624501846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

K-medoids 聚类是 K-means 聚类的一种流行变体,广泛应用于模式识别和机器学习。K-medoids 聚类的一个主要缺点是,不恰当的初始化会使其陷入局部最优状态。为了克服这一缺点,最近提出了一种改进的 k-medoids 聚类算法,称为 INCKM 算法,它首次将增量初始化应用于 k-medoids 聚类。INCKM 算法需要构建由一个超参数决定的候选 Medoids 子集来进行初始化,同时,在处理不平衡数据集时,超参数选择不正确会导致 INCKM 算法失败。在本文中,我们提出了一种新的 k-medoids 聚类算法,称为增量 k-means++ 算法(INCKPP),它以一种新的增量方式进行初始化,通过非参数和随机的 k-means++ 初始化,尝试在每个阶段优化添加一个新的聚类中心。INCKPP 算法克服了 INCKM 算法中超参数选择的困难,提高了聚类性能,并能很好地处理不平衡数据集。但是,INCKPP 算法的计算效率不够高。针对这一问题,我们进一步提出了一种改进的 INCKPP 算法,即 INCKPPsample 算法,它在保持 INCKPP 算法聚类性能的基础上提高了聚类效率。在合成数据集和真实数据集(包括不平衡数据集)上的大量实验结果表明,所提出的算法优于其他比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Careful Seeding for k-Medois Clustering with Incremental k-Means++ Initialization

K-medoids clustering is a popular variant of k-means clustering and widely used in pattern recognition and machine learning. A main drawback of k-medoids clustering is that an improper initialization can cause it to get trapped in local optima. An improved k-medoids clustering algorithm, called INCKM algorithm, which is the first to apply incremental initialization to k-medoids clustering, was recently proposed to overcome this drawback. The INCKM algorithm requires the construction of a subset of candidate medoids determined by one hyperparameter for initialization, and meanwhile, it always fails when dealing with imbalanced datasets with an incorrect hyperparameter selection. In this paper, we propose a novel k-medoids clustering algorithm, called incremental k-means++ (INCKPP) algorithm, which initializes with a novel incremental manner, attempting to optimally add one new cluster center at each stage through a non-parametric and stochastic k-means++ initialization. The INCKPP algorithm overcomes the difficulty of hyperparameter selection in the INCKM algorithm, improves the clustering performance, and can deal with imbalanced datasets well. However, the INCKPP algorithm is not computationally efficient enough. To deal with this, we further propose an improved INCKPP algorithm, called INCKPPsample algorithm which improves the clustering efficiency while maintaining the clustering performance of the INCKPP algorithm. Extensive results from experiments on both synthetic and real-world datasets, including imbalanced datasets, illustrate that the proposed algorithms outperforms than the other compared algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Circuits Systems and Computers
Journal of Circuits Systems and Computers 工程技术-工程:电子与电气
CiteScore
2.80
自引率
26.70%
发文量
350
审稿时长
5.4 months
期刊介绍: Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections: Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality. Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.
期刊最新文献
An Intelligent Apple Identification Method via the Collaboration of YOLOv5 Algorithm and Fast-Guided Filter Theory Careful Seeding for k-Medois Clustering with Incremental k-Means++ Initialization Analysis and Simulation of Current Balancer Circuit for Phase-Gain Correction of Unbalanced Differential Signals SPC-Indexed Indirect Branch Hardware Cache Redirecting Technique in Binary Translation Image Classification Method Based on Multi-Scale Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1