{"title":"用于 28 千兆赫发射机的带多个选择性吸收阻带的带通滤波器","authors":"Stefano Moscato, Steven Caicedo, Matteo Oldoni","doi":"10.1017/s1759078724000394","DOIUrl":null,"url":null,"abstract":"This manuscript presents a novel design for an absorptive bandpass filter for mm-wave applications, specifically the commercial FR2 spectrum. Three bands have been selected to be properly input matched with only one of them being the passband, where the insertion loss is minimized. The proposed approach relies on a multiplexer topology implemented through microstrip lines and on thin-film manufacturing process on alumina to shrink the footprint. Cascades of half-wavelength C-shape open-ended resonators are exploited to create the matched bands and define the filter’s selectivity. The selected passband spans from 26.5 to 28.5 GHz, with a measured maximum insertion loss of 3.05 dB for a −3 dB fractional bandwidth of 7.3%. Two absorptive bands are realized to match signals at 24 and 32.25 GHz. The alumina die footprint is 5500 × 3440 µm<jats:sup>2</jats:sup>, compatible with immediate integration within a mm-wave lineup.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"49 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandpass filter with multiple selective absorptive stopbands for 28 GHz transmitters\",\"authors\":\"Stefano Moscato, Steven Caicedo, Matteo Oldoni\",\"doi\":\"10.1017/s1759078724000394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript presents a novel design for an absorptive bandpass filter for mm-wave applications, specifically the commercial FR2 spectrum. Three bands have been selected to be properly input matched with only one of them being the passband, where the insertion loss is minimized. The proposed approach relies on a multiplexer topology implemented through microstrip lines and on thin-film manufacturing process on alumina to shrink the footprint. Cascades of half-wavelength C-shape open-ended resonators are exploited to create the matched bands and define the filter’s selectivity. The selected passband spans from 26.5 to 28.5 GHz, with a measured maximum insertion loss of 3.05 dB for a −3 dB fractional bandwidth of 7.3%. Two absorptive bands are realized to match signals at 24 and 32.25 GHz. The alumina die footprint is 5500 × 3440 µm<jats:sup>2</jats:sup>, compatible with immediate integration within a mm-wave lineup.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078724000394\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000394","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bandpass filter with multiple selective absorptive stopbands for 28 GHz transmitters
This manuscript presents a novel design for an absorptive bandpass filter for mm-wave applications, specifically the commercial FR2 spectrum. Three bands have been selected to be properly input matched with only one of them being the passband, where the insertion loss is minimized. The proposed approach relies on a multiplexer topology implemented through microstrip lines and on thin-film manufacturing process on alumina to shrink the footprint. Cascades of half-wavelength C-shape open-ended resonators are exploited to create the matched bands and define the filter’s selectivity. The selected passband spans from 26.5 to 28.5 GHz, with a measured maximum insertion loss of 3.05 dB for a −3 dB fractional bandwidth of 7.3%. Two absorptive bands are realized to match signals at 24 and 32.25 GHz. The alumina die footprint is 5500 × 3440 µm2, compatible with immediate integration within a mm-wave lineup.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.