{"title":"不同烧结参数下烧结纳米银的弹塑性纳米压痕行为","authors":"Yanwei Dai, Libo Zhao, Fei Qin, Si Chen","doi":"10.1108/ssmt-12-2023-0076","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.</p><!--/ Abstract__block -->","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"298 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastoplastic nanoindentation behaviors of sintered nano-silver under various sintering parameters\",\"authors\":\"Yanwei Dai, Libo Zhao, Fei Qin, Si Chen\",\"doi\":\"10.1108/ssmt-12-2023-0076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49499,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\"298 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-12-2023-0076\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-12-2023-0076","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Elastoplastic nanoindentation behaviors of sintered nano-silver under various sintering parameters
Purpose
This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.
Design/methodology/approach
Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.
Findings
The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.
Practical implications
The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.
Originality/value
This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.