Hussam N. Fakhouri, Feras M. Awaysheh, Sadi Alawadi, Mohannad Alkhalaileh, Faten Hamad
{"title":"用于数据优化的四向量智能元启发式","authors":"Hussam N. Fakhouri, Feras M. Awaysheh, Sadi Alawadi, Mohannad Alkhalaileh, Faten Hamad","doi":"10.1007/s00607-024-01287-w","DOIUrl":null,"url":null,"abstract":"<p>Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"23 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four vector intelligent metaheuristic for data optimization\",\"authors\":\"Hussam N. Fakhouri, Feras M. Awaysheh, Sadi Alawadi, Mohannad Alkhalaileh, Faten Hamad\",\"doi\":\"10.1007/s00607-024-01287-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01287-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01287-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Four vector intelligent metaheuristic for data optimization
Swarm intelligence (SI) algorithms represent a class of Artificial Intelligence (AI) optimization metaheuristics used for solving complex optimization problems. However, a key challenge in solving complex problems is maintaining the balance between exploration and exploitation to find the optimal global solution and avoid local minima. This paper proposes an innovative Swarm Intelligence (SI) algorithm called the Four Vector Intelligent Metaheuristic (FVIM) to address the aforementioned problem. FVIM’s search strategy is guided by four top-performing leaders within a swarm, ensuring a balanced exploration-exploitation trade-off in the search space, avoiding local minima, and mitigating low convergence issues. The efficacy of FVIM is evaluated through extensive experiments conducted over two datasets, incorporating both qualitative and quantitative statistical measurements. One dataset contains twenty-three well-known single-objective optimization functions, such as fixed-dimensional and multi-modal functions, while the other dataset comprises the CEC2017 functions. Additionally, the Wilcoxon test was computed to validate the result’s significance. The results illustrate FVIM’s effectiveness in addressing diverse optimization challenges. Moreover, FVIM has been successfully applied to tackle engineering design problems, such as weld beam and truss engineering design.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.