用于量子计算的射频和微波计量学--英国国家物理实验室的最新进展

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Microwave and Wireless Technologies Pub Date : 2024-04-25 DOI:10.1017/s1759078724000369
M. Stanley, Xiaobang Shang, Murat Celep, Martin Salter, Sebastian de Graaf, Tobias Lindstrom, Sang-Hee Shin, James Skinner, Dilbagh Singh, Daniel Stokes, Manognya Acharya, Nick M. Ridler
{"title":"用于量子计算的射频和微波计量学--英国国家物理实验室的最新进展","authors":"M. Stanley, Xiaobang Shang, Murat Celep, Martin Salter, Sebastian de Graaf, Tobias Lindstrom, Sang-Hee Shin, James Skinner, Dilbagh Singh, Daniel Stokes, Manognya Acharya, Nick M. Ridler","doi":"10.1017/s1759078724000369","DOIUrl":null,"url":null,"abstract":"\n Development of large-scale quantum computing systems will require radio frequency (RF) and microwave technologies operating reliably at cryogenic temperatures down to tens of milli-Kelvin (mK). The quantum bits in the most promising quantum computing technologies such as the superconducting quantum computing are designed using principles of microwave engineering and operated using microwave signals. The control, readout, and coupling of qubits are implemented using a network of microwave components operating at various temperature stages. To ensure reliable operation of quantum computing systems, it is critical to ensure optimal performance of these microwave components and qubits at their respective operating temperatures, which can be as low as mK temperatures. It is, therefore, critical to understand the microwave characteristics of waveforms, components, circuits, networks, and systems at cryogenic temperatures. The UK’s National Physical Laboratory (NPL) is focussed on developing new microwave measurement capabilities through the UK’s National Quantum Technologies Programme to address various microwave test and measurement challenges in quantum computing. This includes the development of various measurement capabilities to characterize the microwave performance of quantum and microwave devices and substrate materials at cryogenic temperatures. This paper summarizes the roadmap of activities at NPL to address these microwave metrology challenges in quantum computing.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF and microwave metrology for quantum computing – recent developments at the UK’s National Physical Laboratory\",\"authors\":\"M. Stanley, Xiaobang Shang, Murat Celep, Martin Salter, Sebastian de Graaf, Tobias Lindstrom, Sang-Hee Shin, James Skinner, Dilbagh Singh, Daniel Stokes, Manognya Acharya, Nick M. Ridler\",\"doi\":\"10.1017/s1759078724000369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Development of large-scale quantum computing systems will require radio frequency (RF) and microwave technologies operating reliably at cryogenic temperatures down to tens of milli-Kelvin (mK). The quantum bits in the most promising quantum computing technologies such as the superconducting quantum computing are designed using principles of microwave engineering and operated using microwave signals. The control, readout, and coupling of qubits are implemented using a network of microwave components operating at various temperature stages. To ensure reliable operation of quantum computing systems, it is critical to ensure optimal performance of these microwave components and qubits at their respective operating temperatures, which can be as low as mK temperatures. It is, therefore, critical to understand the microwave characteristics of waveforms, components, circuits, networks, and systems at cryogenic temperatures. The UK’s National Physical Laboratory (NPL) is focussed on developing new microwave measurement capabilities through the UK’s National Quantum Technologies Programme to address various microwave test and measurement challenges in quantum computing. This includes the development of various measurement capabilities to characterize the microwave performance of quantum and microwave devices and substrate materials at cryogenic temperatures. This paper summarizes the roadmap of activities at NPL to address these microwave metrology challenges in quantum computing.\",\"PeriodicalId\":49052,\"journal\":{\"name\":\"International Journal of Microwave and Wireless Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave and Wireless Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1759078724000369\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1759078724000369","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大规模量子计算系统的开发需要在低至几十毫开尔文(mK)的低温条件下可靠运行的射频(RF)和微波技术。最有前途的量子计算技术(如超导量子计算)中的量子比特是利用微波工程原理设计的,并使用微波信号进行操作。量子比特的控制、读出和耦合是通过在不同温度阶段工作的微波元件网络实现的。为确保量子计算系统的可靠运行,关键是要确保这些微波元件和量子比特在各自的工作温度(可低至 mK 温度)下具有最佳性能。因此,了解低温下波形、元件、电路、网络和系统的微波特性至关重要。英国国家物理实验室(NPL)通过英国国家量子技术计划重点开发新的微波测量能力,以应对量子计算中的各种微波测试和测量挑战。这包括开发各种测量能力,以鉴定量子和微波器件及基底材料在低温下的微波性能。本文概述了 NPL 为应对量子计算中的这些微波计量挑战而开展的活动路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RF and microwave metrology for quantum computing – recent developments at the UK’s National Physical Laboratory
Development of large-scale quantum computing systems will require radio frequency (RF) and microwave technologies operating reliably at cryogenic temperatures down to tens of milli-Kelvin (mK). The quantum bits in the most promising quantum computing technologies such as the superconducting quantum computing are designed using principles of microwave engineering and operated using microwave signals. The control, readout, and coupling of qubits are implemented using a network of microwave components operating at various temperature stages. To ensure reliable operation of quantum computing systems, it is critical to ensure optimal performance of these microwave components and qubits at their respective operating temperatures, which can be as low as mK temperatures. It is, therefore, critical to understand the microwave characteristics of waveforms, components, circuits, networks, and systems at cryogenic temperatures. The UK’s National Physical Laboratory (NPL) is focussed on developing new microwave measurement capabilities through the UK’s National Quantum Technologies Programme to address various microwave test and measurement challenges in quantum computing. This includes the development of various measurement capabilities to characterize the microwave performance of quantum and microwave devices and substrate materials at cryogenic temperatures. This paper summarizes the roadmap of activities at NPL to address these microwave metrology challenges in quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
期刊最新文献
A fast phase calibration method for a liquid crystal microwave phased array antenna assisted by neural network Air-filled substrate integrated waveguide bandpass filter based on miniaturized non-resonant node structure Design of a broadband high-efficiency power amplifier based on a rectangular double transmission line structure A broadband metasurface antenna with multimode resonance Design of a broadband high-efficiency power amplifier based on ring-resonant filter with compensation architecture and a series of continuous modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1