生物炭衍生的锂离子电池负极材料:综述

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY Batteries Pub Date : 2024-04-24 DOI:10.3390/batteries10050144
N. S. Seroka, Hongze Luo, L. Khotseng
{"title":"生物炭衍生的锂离子电池负极材料:综述","authors":"N. S. Seroka, Hongze Luo, L. Khotseng","doi":"10.3390/batteries10050144","DOIUrl":null,"url":null,"abstract":"Highly portable nanoelectronics and large-scale electronics rely on lithium-ion batteries (LIBs) as the most reliable energy storage technology. This method is thought to be both environmentally friendly and cost-effective. We provide a study of a low-cost, abundant, and renewable supply of carbon-based biomass with potential uses in LIBs. Renewable feedstocks have received significant attention in recent decades as promising tools for efficient and alternative anode materials for LIBs. Researchers can synthesise carbon-rich biochar through the pyrolytic process of biomass. Depending on the synthetic process, precise surface chemistry, and textural qualities such as specific surface area and porosity, this material can be customised to favour application-specific properties with a preferred application. In this research, we look at the performance of biochar in LIBs, its properties, and the biomass supply, and we discuss the prospects for these biomass-derived materials in energy storage devices.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review\",\"authors\":\"N. S. Seroka, Hongze Luo, L. Khotseng\",\"doi\":\"10.3390/batteries10050144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly portable nanoelectronics and large-scale electronics rely on lithium-ion batteries (LIBs) as the most reliable energy storage technology. This method is thought to be both environmentally friendly and cost-effective. We provide a study of a low-cost, abundant, and renewable supply of carbon-based biomass with potential uses in LIBs. Renewable feedstocks have received significant attention in recent decades as promising tools for efficient and alternative anode materials for LIBs. Researchers can synthesise carbon-rich biochar through the pyrolytic process of biomass. Depending on the synthetic process, precise surface chemistry, and textural qualities such as specific surface area and porosity, this material can be customised to favour application-specific properties with a preferred application. In this research, we look at the performance of biochar in LIBs, its properties, and the biomass supply, and we discuss the prospects for these biomass-derived materials in energy storage devices.\",\"PeriodicalId\":8755,\"journal\":{\"name\":\"Batteries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10050144\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10050144","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

高度便携的纳米电子器件和大型电子器件都依赖于锂离子电池(LIB)这种最可靠的能量存储技术。这种方法被认为既环保又具有成本效益。我们研究了一种低成本、丰富且可再生的碳基生物质,它在锂离子电池中具有潜在用途。近几十年来,可再生原料作为锂离子电池的高效替代阳极材料受到了广泛关注。研究人员可通过生物质热解过程合成富碳生物炭。根据合成工艺、精确的表面化学性质以及比表面积和孔隙率等质地特性,这种材料可以进行定制,以满足首选应用的特定性能要求。在这项研究中,我们探讨了生物炭在锂电池中的性能、特性和生物质供应,并讨论了这些生物质衍生材料在储能设备中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review
Highly portable nanoelectronics and large-scale electronics rely on lithium-ion batteries (LIBs) as the most reliable energy storage technology. This method is thought to be both environmentally friendly and cost-effective. We provide a study of a low-cost, abundant, and renewable supply of carbon-based biomass with potential uses in LIBs. Renewable feedstocks have received significant attention in recent decades as promising tools for efficient and alternative anode materials for LIBs. Researchers can synthesise carbon-rich biochar through the pyrolytic process of biomass. Depending on the synthetic process, precise surface chemistry, and textural qualities such as specific surface area and porosity, this material can be customised to favour application-specific properties with a preferred application. In this research, we look at the performance of biochar in LIBs, its properties, and the biomass supply, and we discuss the prospects for these biomass-derived materials in energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
期刊最新文献
Copper Wire Resistance Corrosion Test for Assessing Copper Compatibility of E-Thermal Fluids for Battery Electric Vehicles (BEVs) Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review A Physics–Guided Machine Learning Approach for Capacity Fading Mechanism Detection and Fading Rate Prediction Using Early Cycle Data A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1