{"title":"低溶解氧浓度对 Ti-13Nb-13Zr 磨蚀特性和离子释放的影响","authors":"Shuangshuang Zhang, Xinyu Du, Wei Shi, Song Xiang","doi":"10.1177/1478422x241246611","DOIUrl":null,"url":null,"abstract":"The tribocorrosion of titanium implants is the primary cause of their late failure. As the most promising third-generation medical β-type titanium alloy, Ti-13Nb-13Zr (TC26) demonstrates superior corrosion resistance and harmless chemical element composition, making it an excellent alternative to Ti-6Al-4V alloy (TC4). Nonetheless, this study has revealed a significant weakness of TC26 in tribocorrosion properties under low dissolved oxygen concentration conditions, which could pose potential hazards in subsequent medical applications. The effects of low dissolved oxygen concentration on the tribocorrosion properties and ion release were examined using electrochemical methods, laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma emission spectrometer. The findings indicate that TC26 exhibits significantly inferior corrosion resistance compared to TC4 due to the sluggish recovery rate of the passivation film under low dissolved oxygen concentration conditions during wear. Moreover, TC26 experiences greater mechanical wear loss than that of TC4. However, under the synergistic effect of wear and corrosion, TC26 releases a minimal amount of ions, while excessive harmful Al ions are released by TC4.","PeriodicalId":517061,"journal":{"name":"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control","volume":" 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of low dissolved oxygen concentration on the tribocorrosion properties and ion release of Ti-13Nb-13Zr\",\"authors\":\"Shuangshuang Zhang, Xinyu Du, Wei Shi, Song Xiang\",\"doi\":\"10.1177/1478422x241246611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tribocorrosion of titanium implants is the primary cause of their late failure. As the most promising third-generation medical β-type titanium alloy, Ti-13Nb-13Zr (TC26) demonstrates superior corrosion resistance and harmless chemical element composition, making it an excellent alternative to Ti-6Al-4V alloy (TC4). Nonetheless, this study has revealed a significant weakness of TC26 in tribocorrosion properties under low dissolved oxygen concentration conditions, which could pose potential hazards in subsequent medical applications. The effects of low dissolved oxygen concentration on the tribocorrosion properties and ion release were examined using electrochemical methods, laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma emission spectrometer. The findings indicate that TC26 exhibits significantly inferior corrosion resistance compared to TC4 due to the sluggish recovery rate of the passivation film under low dissolved oxygen concentration conditions during wear. Moreover, TC26 experiences greater mechanical wear loss than that of TC4. However, under the synergistic effect of wear and corrosion, TC26 releases a minimal amount of ions, while excessive harmful Al ions are released by TC4.\",\"PeriodicalId\":517061,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control\",\"volume\":\" 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1478422x241246611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1478422x241246611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of low dissolved oxygen concentration on the tribocorrosion properties and ion release of Ti-13Nb-13Zr
The tribocorrosion of titanium implants is the primary cause of their late failure. As the most promising third-generation medical β-type titanium alloy, Ti-13Nb-13Zr (TC26) demonstrates superior corrosion resistance and harmless chemical element composition, making it an excellent alternative to Ti-6Al-4V alloy (TC4). Nonetheless, this study has revealed a significant weakness of TC26 in tribocorrosion properties under low dissolved oxygen concentration conditions, which could pose potential hazards in subsequent medical applications. The effects of low dissolved oxygen concentration on the tribocorrosion properties and ion release were examined using electrochemical methods, laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma emission spectrometer. The findings indicate that TC26 exhibits significantly inferior corrosion resistance compared to TC4 due to the sluggish recovery rate of the passivation film under low dissolved oxygen concentration conditions during wear. Moreover, TC26 experiences greater mechanical wear loss than that of TC4. However, under the synergistic effect of wear and corrosion, TC26 releases a minimal amount of ions, while excessive harmful Al ions are released by TC4.