Gaurav Anand, Santanu Sardar, Ashim Guha, Debdulal Das
{"title":"Al-Al3Fe 复合材料线切割放电加工中的表面完整性特征和多响应优化","authors":"Gaurav Anand, Santanu Sardar, Ashim Guha, Debdulal Das","doi":"10.1007/s13369-024-08969-9","DOIUrl":null,"url":null,"abstract":"<div><p>Wire-electrical discharge machining (wire-EDM) is gaining wider acceptance for producing components of Al-matrix composites (Al-MCs) that are hard to machine by traditional methodologies. The related research is primarily limited to ex-situ Al-MCs commonly reinforced with ceramic particles; however, Al-MCs reinforced with in-situ ordered intermetallics have evolved as superior composites nowadays. This research has focused on wire-EDM of in-situ Al/Al<sub>3</sub>Fe composites developed by the reactive stir-casting route. The influence of three machining variables (pulse-on-time, servo voltage, and peak-current) and one material parameter (vol% of reinforcement) have been studied following the L<sub>27</sub> Taguchi design. The integrity of the machined surface has been characterized via measurements of surface roughness (SR) and the alteration of surface chemistry (ASC, ΣCu + Zn + O), in addition to the evaluation of kerf width (KW) as a machining performance indicator. It has been established that all four control factors are significant for KW, while ASC is influenced by all factors except vol% of reinforcement; however, only pulse-on-time is substantial for SR. Analytical models of individual responses are developed while the desirability approach helps to accomplish the multi-response optimization; several confirmation experiments establish the authenticity of these predictions with an error < 8%. Characterizations of machined surfaces and wire electrodes by FESEM and EDS techniques reveal that the surface integrity of in-situ Al/Al<sub>3</sub>Fe composites varies significantly with machining conditions.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"49 11","pages":"15289 - 15324"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Integrity Characteristics and Multi-response Optimization in Wire-EDM of Al–Al3Fe Composites\",\"authors\":\"Gaurav Anand, Santanu Sardar, Ashim Guha, Debdulal Das\",\"doi\":\"10.1007/s13369-024-08969-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wire-electrical discharge machining (wire-EDM) is gaining wider acceptance for producing components of Al-matrix composites (Al-MCs) that are hard to machine by traditional methodologies. The related research is primarily limited to ex-situ Al-MCs commonly reinforced with ceramic particles; however, Al-MCs reinforced with in-situ ordered intermetallics have evolved as superior composites nowadays. This research has focused on wire-EDM of in-situ Al/Al<sub>3</sub>Fe composites developed by the reactive stir-casting route. The influence of three machining variables (pulse-on-time, servo voltage, and peak-current) and one material parameter (vol% of reinforcement) have been studied following the L<sub>27</sub> Taguchi design. The integrity of the machined surface has been characterized via measurements of surface roughness (SR) and the alteration of surface chemistry (ASC, ΣCu + Zn + O), in addition to the evaluation of kerf width (KW) as a machining performance indicator. It has been established that all four control factors are significant for KW, while ASC is influenced by all factors except vol% of reinforcement; however, only pulse-on-time is substantial for SR. Analytical models of individual responses are developed while the desirability approach helps to accomplish the multi-response optimization; several confirmation experiments establish the authenticity of these predictions with an error < 8%. Characterizations of machined surfaces and wire electrodes by FESEM and EDS techniques reveal that the surface integrity of in-situ Al/Al<sub>3</sub>Fe composites varies significantly with machining conditions.</p></div>\",\"PeriodicalId\":54354,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"49 11\",\"pages\":\"15289 - 15324\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13369-024-08969-9\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-08969-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Surface Integrity Characteristics and Multi-response Optimization in Wire-EDM of Al–Al3Fe Composites
Wire-electrical discharge machining (wire-EDM) is gaining wider acceptance for producing components of Al-matrix composites (Al-MCs) that are hard to machine by traditional methodologies. The related research is primarily limited to ex-situ Al-MCs commonly reinforced with ceramic particles; however, Al-MCs reinforced with in-situ ordered intermetallics have evolved as superior composites nowadays. This research has focused on wire-EDM of in-situ Al/Al3Fe composites developed by the reactive stir-casting route. The influence of three machining variables (pulse-on-time, servo voltage, and peak-current) and one material parameter (vol% of reinforcement) have been studied following the L27 Taguchi design. The integrity of the machined surface has been characterized via measurements of surface roughness (SR) and the alteration of surface chemistry (ASC, ΣCu + Zn + O), in addition to the evaluation of kerf width (KW) as a machining performance indicator. It has been established that all four control factors are significant for KW, while ASC is influenced by all factors except vol% of reinforcement; however, only pulse-on-time is substantial for SR. Analytical models of individual responses are developed while the desirability approach helps to accomplish the multi-response optimization; several confirmation experiments establish the authenticity of these predictions with an error < 8%. Characterizations of machined surfaces and wire electrodes by FESEM and EDS techniques reveal that the surface integrity of in-situ Al/Al3Fe composites varies significantly with machining conditions.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.