SLA 印刷中间结构的神经网络建模

Anne Schmitz
{"title":"SLA 印刷中间结构的神经网络建模","authors":"Anne Schmitz","doi":"10.1115/1.4065291","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the scarcity of comprehensive studies on the collective impact of various parametric lattice designs on mesostructure functionality. Focusing on optimizing the energy absorption of a serpentine mesostructure made using SLA, this research leverages a feedforward neural network to explore the interplay between line width, number of turns, and material properties on the energy absorbed by the structure. Compression simulations using a finite element model, covering a range of configurations, provided the dataset for neural network training. The resulting network was used to probe correlations between geometric variables, material, and energy absorption. Additionally, a neural network sensitivity analysis explored the impact of hidden layers and number of neurons on the network's performance, demonstrating the network's robustness. The optimized mesostructure configuration, identified by the neural network, maximized energy absorption. Using foundational mechanics of materials concepts, the discussion explains the how the geometry and material of the cellular mesostructure affects structural stiffness.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Modeling of an SLA Printed Mesostructure\",\"authors\":\"Anne Schmitz\",\"doi\":\"10.1115/1.4065291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper addresses the scarcity of comprehensive studies on the collective impact of various parametric lattice designs on mesostructure functionality. Focusing on optimizing the energy absorption of a serpentine mesostructure made using SLA, this research leverages a feedforward neural network to explore the interplay between line width, number of turns, and material properties on the energy absorbed by the structure. Compression simulations using a finite element model, covering a range of configurations, provided the dataset for neural network training. The resulting network was used to probe correlations between geometric variables, material, and energy absorption. Additionally, a neural network sensitivity analysis explored the impact of hidden layers and number of neurons on the network's performance, demonstrating the network's robustness. The optimized mesostructure configuration, identified by the neural network, maximized energy absorption. Using foundational mechanics of materials concepts, the discussion explains the how the geometry and material of the cellular mesostructure affects structural stiffness.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于各种参数化晶格设计对介质结构功能的共同影响的综合研究十分匮乏,本文针对这一问题进行了研究。本研究以优化使用 SLA 制造的蛇形介观结构的能量吸收为重点,利用前馈神经网络探索线宽、圈数和材料特性之间对结构能量吸收的相互影响。使用有限元模型进行的压缩模拟涵盖了一系列配置,为神经网络训练提供了数据集。由此产生的网络用于探究几何变量、材料和能量吸收之间的相关性。此外,神经网络灵敏度分析探索了隐藏层和神经元数量对网络性能的影响,证明了网络的鲁棒性。神经网络确定的优化中间结构配置最大限度地吸收了能量。讨论利用材料力学的基本概念,解释了细胞介质结构的几何形状和材料如何影响结构刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network Modeling of an SLA Printed Mesostructure
This paper addresses the scarcity of comprehensive studies on the collective impact of various parametric lattice designs on mesostructure functionality. Focusing on optimizing the energy absorption of a serpentine mesostructure made using SLA, this research leverages a feedforward neural network to explore the interplay between line width, number of turns, and material properties on the energy absorbed by the structure. Compression simulations using a finite element model, covering a range of configurations, provided the dataset for neural network training. The resulting network was used to probe correlations between geometric variables, material, and energy absorption. Additionally, a neural network sensitivity analysis explored the impact of hidden layers and number of neurons on the network's performance, demonstrating the network's robustness. The optimized mesostructure configuration, identified by the neural network, maximized energy absorption. Using foundational mechanics of materials concepts, the discussion explains the how the geometry and material of the cellular mesostructure affects structural stiffness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Speed Three-Dimensional-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts. Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. Assistive Technology for Real-Time Fall Prevention during Walking: Evaluation of the Effect of an Intelligent Foot Orthosis A Simple Poc Device for Temperature Control of Multiple Reactions During Recombinase Polymerase Amplification Auxetic Structure Inspired Microneedle Arrays for Minimally Invasive Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1