Anna A. Shestakova, Ekaterina V. Fedotova, Vasily S. Lyulyukin
{"title":"Era5 再分析与风能应用的相关性:与 Sodar 观测数据的比较","authors":"Anna A. Shestakova, Ekaterina V. Fedotova, Vasily S. Lyulyukin","doi":"10.24057/2071-9388-2023-2782","DOIUrl":null,"url":null,"abstract":"ERA5 reanalysis is one of the most trusted climate data sources for wind energy modeling. However, any reanalysis should be verified through comparison with observational data to detect biases before further use. For wind verification at heights close to typical wind turbine hub heights (i.e. about 100 m), it is preferable to use either in-situ measurements from meteorological towers or remote sensing data like acoustic and laser vertical profilers, which remain independent of reanalysis. In this study, we validated the wind speed data from ERA5 at a height of 100 m using data from four sodars (acoustic profilers) located in different climatic and natural vegetation zones across European Russia. The assessments revealed a systematic error at most stations; in general, ERA5 tends to overestimate wind speed over forests and underestimate it over grasslands and deserts. As anticipated, the largest errors were observed at a station on the mountain coast, where the relative wind speed error reached 45%. We performed the bias correction which reduced absolute errors and eliminated the error dependence on the daily course, which was crucial for wind energy modeling. Without bias correction, the error in the wind power capacity factor ranged from 30 to 50%. Hence, it is strongly recommended to apply correction of ERA5 for energy calculations, at least in the areas under consideration.. ","PeriodicalId":37517,"journal":{"name":"Geography, Environment, Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relevance Of Era5 Reanalysis For Wind Energy Applications: Comparison With Sodar Observations\",\"authors\":\"Anna A. Shestakova, Ekaterina V. Fedotova, Vasily S. Lyulyukin\",\"doi\":\"10.24057/2071-9388-2023-2782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ERA5 reanalysis is one of the most trusted climate data sources for wind energy modeling. However, any reanalysis should be verified through comparison with observational data to detect biases before further use. For wind verification at heights close to typical wind turbine hub heights (i.e. about 100 m), it is preferable to use either in-situ measurements from meteorological towers or remote sensing data like acoustic and laser vertical profilers, which remain independent of reanalysis. In this study, we validated the wind speed data from ERA5 at a height of 100 m using data from four sodars (acoustic profilers) located in different climatic and natural vegetation zones across European Russia. The assessments revealed a systematic error at most stations; in general, ERA5 tends to overestimate wind speed over forests and underestimate it over grasslands and deserts. As anticipated, the largest errors were observed at a station on the mountain coast, where the relative wind speed error reached 45%. We performed the bias correction which reduced absolute errors and eliminated the error dependence on the daily course, which was crucial for wind energy modeling. Without bias correction, the error in the wind power capacity factor ranged from 30 to 50%. Hence, it is strongly recommended to apply correction of ERA5 for energy calculations, at least in the areas under consideration.. \",\"PeriodicalId\":37517,\"journal\":{\"name\":\"Geography, Environment, Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geography, Environment, Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24057/2071-9388-2023-2782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography, Environment, Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24057/2071-9388-2023-2782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Relevance Of Era5 Reanalysis For Wind Energy Applications: Comparison With Sodar Observations
ERA5 reanalysis is one of the most trusted climate data sources for wind energy modeling. However, any reanalysis should be verified through comparison with observational data to detect biases before further use. For wind verification at heights close to typical wind turbine hub heights (i.e. about 100 m), it is preferable to use either in-situ measurements from meteorological towers or remote sensing data like acoustic and laser vertical profilers, which remain independent of reanalysis. In this study, we validated the wind speed data from ERA5 at a height of 100 m using data from four sodars (acoustic profilers) located in different climatic and natural vegetation zones across European Russia. The assessments revealed a systematic error at most stations; in general, ERA5 tends to overestimate wind speed over forests and underestimate it over grasslands and deserts. As anticipated, the largest errors were observed at a station on the mountain coast, where the relative wind speed error reached 45%. We performed the bias correction which reduced absolute errors and eliminated the error dependence on the daily course, which was crucial for wind energy modeling. Without bias correction, the error in the wind power capacity factor ranged from 30 to 50%. Hence, it is strongly recommended to apply correction of ERA5 for energy calculations, at least in the areas under consideration..
期刊介绍:
Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is founded by the Faculty of Geography of Lomonosov Moscow State University, The Russian Geographical Society and by the Institute of Geography of RAS. It is the official journal of Russian Geographical Society, and a fully open access journal. Journal “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” publishes original, innovative, interdisciplinary and timely research letter articles and concise reviews on studies of the Earth and its environment scientific field. This goal covers a broad spectrum of scientific research areas (physical-, social-, economic-, cultural geography, environmental sciences and sustainable development) and also considers contemporary and widely used research methods, such as geoinformatics, cartography, remote sensing (including from space), geophysics, geochemistry, etc. “GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY” is the only original English-language journal in the field of geography and environmental sciences published in Russia. It is supposed to be an outlet from the Russian-speaking countries to Europe and an inlet from Europe to the Russian-speaking countries regarding environmental and Earth sciences, geography and sustainability. The main sections of the journal are the theory of geography and ecology, the theory of sustainable development, use of natural resources, natural resources assessment, global and regional changes of environment and climate, social-economical geography, ecological regional planning, sustainable regional development, applied aspects of geography and ecology, geoinformatics and ecological cartography, ecological problems of oil and gas sector, nature conservations, health and environment, and education for sustainable development. Articles are freely available to both subscribers and the wider public with permitted reuse.