评估用于测量清醒小鼠相对脑氧代谢的校准和非校准光学成像方法

IF 2.3 4区 医学 Q3 BIOPHYSICS Physiological measurement Pub Date : 2024-04-01 DOI:10.1088/1361-6579/ad3a2d
Andrew E Toader, Mitsuhiro Fukuda, Alberto L Vazquez
{"title":"评估用于测量清醒小鼠相对脑氧代谢的校准和非校准光学成像方法","authors":"Andrew E Toader, Mitsuhiro Fukuda, Alberto L Vazquez","doi":"10.1088/1361-6579/ad3a2d","DOIUrl":null,"url":null,"abstract":"Abstract Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus. Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2 models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration. Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2 with differences as small as 7%–9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2 change calculations. Significance. The effect of calibration on rCMRO2 calculations remains understudied, and we systematically evaluated different rCMRO2 calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2 calculation.","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of calibrated and uncalibrated optical imaging approaches for relative cerebral oxygen metabolism measurements in awake mice\",\"authors\":\"Andrew E Toader, Mitsuhiro Fukuda, Alberto L Vazquez\",\"doi\":\"10.1088/1361-6579/ad3a2d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus. Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2 models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration. Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2 with differences as small as 7%–9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2 change calculations. Significance. The effect of calibration on rCMRO2 calculations remains understudied, and we systematically evaluated different rCMRO2 calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2 calculation.\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad3a2d\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad3a2d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 目的。氧气的持续输送对维持大脑功能至关重要,因此,测量大脑耗氧量可提供重要的生理洞察力。在这项工作中,我们研究了校准和脑血流(CBF)测量对利用血红蛋白敏感的本征光学成像数据计算脑代谢耗氧率(rCMRO2)相对变化的影响。利用这些数据,我们计算出了 rCMRO2,并使用等代谢刺激校准了模型。方法。我们使用清醒的头固定啮齿动物获取血红蛋白敏感光学成像数据,以测试不同的校准和未校准 rCMRO2 模型。高碳酸血症用于校准,胡须刺激用于测试校准的影响。主要结果。我们发现,典型的未校准模型可以提供合理的 rCMRO2 估计值,与校准模型相比,差异小至 7%-9%。不过,校准模型的变异性较低,对基线血红蛋白浓度的依赖性也较小。最后,我们发现为模型提供 CBF 测量值可显著降低 rCMRO2 变化计算的误差和变异性。意义重大。校准对 rCMRO2 计算的影响仍未得到充分研究,我们系统地评估了不同的 rCMRO2 计算方案,考虑了不同的测量组合。本研究对这些方案进行了定量比较,以评估对设计用于 rCMRO2 计算的血液氧合敏感成像实验至关重要的权衡因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of calibrated and uncalibrated optical imaging approaches for relative cerebral oxygen metabolism measurements in awake mice
Abstract Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus. Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2 models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration. Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2 with differences as small as 7%–9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2 change calculations. Significance. The effect of calibration on rCMRO2 calculations remains understudied, and we systematically evaluated different rCMRO2 calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2 calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
期刊最新文献
Adaptive threshold algorithm for detecting EEG-interburst intervals in extremely preterm neonates. Assessment of alternative metrics in the application of infrared thermography to detect muscle damage in sports. Energy expenditure prediction in preschool children: a machine learning approach using accelerometry and external validation. Enhancing P-wave localization for accurate detection of second-degree and third-degree atrioventricular conduction blocks. Changes in physiological signal entropy in patients with obstructive sleep apnoea: a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1