利用低电压扫描透射电子显微镜(STEM-EELS)进行电子能量损失光谱元素定量分析

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-04-23 DOI:10.1016/j.ultramic.2024.113977
Nicolas Dumaresq, Nicolas Brodusch, Stéphanie Bessette, Raynald Gauvin
{"title":"利用低电压扫描透射电子显微镜(STEM-EELS)进行电子能量损失光谱元素定量分析","authors":"Nicolas Dumaresq,&nbsp;Nicolas Brodusch,&nbsp;Stéphanie Bessette,&nbsp;Raynald Gauvin","doi":"10.1016/j.ultramic.2024.113977","DOIUrl":null,"url":null,"abstract":"<div><p>Electron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200–300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB<sub>2</sub> and TiN compounds. All Ti L<sub>2,3,</sub> N K and B K edges were successfully observed with an accelerating voltage as low as 10 keV. An accurate elemental quantification for all three samples was obtained using a multi-linear least square (MLLS) procedure which gives at most a 5 % of standard deviation which is well within the error of the computation of the inelastic partial-cross section used for the quantification. These results show the great potential of using low-voltage EELS which is another step towards a knock-on damage free analysis.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000561/pdfft?md5=fad0fa2101ee5d52c4d660db2954c7b3&pid=1-s2.0-S0304399124000561-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Elemental quantification using electron energy-loss spectroscopy with a low voltage scanning transmission electron microscope (STEM-EELS)\",\"authors\":\"Nicolas Dumaresq,&nbsp;Nicolas Brodusch,&nbsp;Stéphanie Bessette,&nbsp;Raynald Gauvin\",\"doi\":\"10.1016/j.ultramic.2024.113977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200–300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB<sub>2</sub> and TiN compounds. All Ti L<sub>2,3,</sub> N K and B K edges were successfully observed with an accelerating voltage as low as 10 keV. An accurate elemental quantification for all three samples was obtained using a multi-linear least square (MLLS) procedure which gives at most a 5 % of standard deviation which is well within the error of the computation of the inelastic partial-cross section used for the quantification. These results show the great potential of using low-voltage EELS which is another step towards a knock-on damage free analysis.</p></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000561/pdfft?md5=fad0fa2101ee5d52c4d660db2954c7b3&pid=1-s2.0-S0304399124000561-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399124000561\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

随着对新型光束敏感材料(如锂离子电池中使用的锂基化合物)表征需求的不断增加,电子显微镜中的电子束损伤问题在材料研究中变得越来越严重。为了避免辐射损伤,使用低温电子显微镜(Cryo-EM)已成为一种常见的做法,但在传统的 TEM/STEM 中,高加速电压(200-300 keV)仍可能会产生连锁损伤。在这项工作中,对 h-BN、TiB2 和 TiN 化合物在 30、20 和 10 keV 加速电压下的电子能量损失光谱进行了探索。在低至 10 keV 的加速电压下,成功观测到了所有 Ti L2、3、N K 和 B K 边缘。使用多线性最小平方(MLLS)程序对所有三种样品进行了精确的元素定量,其标准偏差最多为 5%,完全在用于定量的非弹性部分截面计算误差范围之内。这些结果表明了使用低电压 EELS 的巨大潜力,这是向无损分析迈出的又一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elemental quantification using electron energy-loss spectroscopy with a low voltage scanning transmission electron microscope (STEM-EELS)

Electron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200–300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB2 and TiN compounds. All Ti L2,3, N K and B K edges were successfully observed with an accelerating voltage as low as 10 keV. An accurate elemental quantification for all three samples was obtained using a multi-linear least square (MLLS) procedure which gives at most a 5 % of standard deviation which is well within the error of the computation of the inelastic partial-cross section used for the quantification. These results show the great potential of using low-voltage EELS which is another step towards a knock-on damage free analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Exploring deep learning models for 4D-STEM-DPC data processing. Application of a novel local and automatic PCA algorithm for diffraction pattern denoising in TEM-ASTAR analysis in microelectronics. A simple and intuitive model for long-range 3D potential distributions of in-operando TEM-samples: Comparison with electron holographic tomography. EBSD and TKD analyses using inverted contrast Kikuchi diffraction patterns and alternative measurement geometries On the temporal transfer function in STEM imaging from finite detector response time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1