{"title":"透明度:促进化学工程领域人工智能变革的缺失环节","authors":"","doi":"10.1016/j.eng.2023.11.024","DOIUrl":null,"url":null,"abstract":"<div><p>The issue of opacity within data-driven artificial intelligence (AI) algorithms has become an impediment to these algorithms’ extensive utilization, especially within sensitive domains concerning health, safety, and high profitability, such as chemical engineering (CE). In order to promote reliable AI utilization in CE, this review discusses the concept of transparency within AI utilizations, which is defined based on both explainable AI (XAI) concepts and key features from within the CE field. This review also highlights the requirements of reliable AI from the aspects of causality (i.e., the correlations between the predictions and inputs of an AI), explainability (i.e., the operational rationales of the workflows), and informativeness (i.e., the mechanistic insights of the investigating systems). Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE. Furthermore, a comprehensive transparency analysis case study is provided as an example to enhance understanding. Overall, this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization. With this vital missing link, AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"39 ","pages":"Pages 45-60"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924002376/pdfft?md5=c665098bea915c5e44b14be68e6b108d&pid=1-s2.0-S2095809924002376-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Transparency: The Missing Link to Boosting AI Transformations in Chemical Engineering\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2023.11.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The issue of opacity within data-driven artificial intelligence (AI) algorithms has become an impediment to these algorithms’ extensive utilization, especially within sensitive domains concerning health, safety, and high profitability, such as chemical engineering (CE). In order to promote reliable AI utilization in CE, this review discusses the concept of transparency within AI utilizations, which is defined based on both explainable AI (XAI) concepts and key features from within the CE field. This review also highlights the requirements of reliable AI from the aspects of causality (i.e., the correlations between the predictions and inputs of an AI), explainability (i.e., the operational rationales of the workflows), and informativeness (i.e., the mechanistic insights of the investigating systems). Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE. Furthermore, a comprehensive transparency analysis case study is provided as an example to enhance understanding. Overall, this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization. With this vital missing link, AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"39 \",\"pages\":\"Pages 45-60\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924002376/pdfft?md5=c665098bea915c5e44b14be68e6b108d&pid=1-s2.0-S2095809924002376-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924002376\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002376","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Transparency: The Missing Link to Boosting AI Transformations in Chemical Engineering
The issue of opacity within data-driven artificial intelligence (AI) algorithms has become an impediment to these algorithms’ extensive utilization, especially within sensitive domains concerning health, safety, and high profitability, such as chemical engineering (CE). In order to promote reliable AI utilization in CE, this review discusses the concept of transparency within AI utilizations, which is defined based on both explainable AI (XAI) concepts and key features from within the CE field. This review also highlights the requirements of reliable AI from the aspects of causality (i.e., the correlations between the predictions and inputs of an AI), explainability (i.e., the operational rationales of the workflows), and informativeness (i.e., the mechanistic insights of the investigating systems). Related techniques are evaluated together with state-of-the-art applications to highlight the significance of establishing reliable AI applications in CE. Furthermore, a comprehensive transparency analysis case study is provided as an example to enhance understanding. Overall, this work provides a thorough discussion of this subject matter in a way that—for the first time—is particularly geared toward chemical engineers in order to raise awareness of responsible AI utilization. With this vital missing link, AI is anticipated to serve as a novel and powerful tool that can tremendously aid chemical engineers in solving bottleneck challenges in CE.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.