叶宽和粒宽的变化通过控制水稻中 LARGE2 的稳定性来影响谷粒和叶片的大小

Zhichuang Yue, Zhipeng Wang, Yilong Yao, Yuanlin Liang, Jiaying Li, Kaili Yin, Ruiying Li, Yibo Li, Yidan Ouyang, Lizhong Xiong, Honghong Hu
{"title":"叶宽和粒宽的变化通过控制水稻中 LARGE2 的稳定性来影响谷粒和叶片的大小","authors":"Zhichuang Yue, Zhipeng Wang, Yilong Yao, Yuanlin Liang, Jiaying Li, Kaili Yin, Ruiying Li, Yibo Li, Yidan Ouyang, Lizhong Xiong, Honghong Hu","doi":"10.1093/plcell/koae136","DOIUrl":null,"url":null,"abstract":"Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many QTLs and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five SNP variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity towards LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG–LARGE2 module mediates grain and leaf size in rice, and suggest the potential of WLGhap.B in improving rice yield.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice\",\"authors\":\"Zhichuang Yue, Zhipeng Wang, Yilong Yao, Yuanlin Liang, Jiaying Li, Kaili Yin, Ruiying Li, Yibo Li, Yidan Ouyang, Lizhong Xiong, Honghong Hu\",\"doi\":\"10.1093/plcell/koae136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many QTLs and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five SNP variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity towards LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG–LARGE2 module mediates grain and leaf size in rice, and suggest the potential of WLGhap.B in improving rice yield.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谷粒和旗叶大小是影响水稻(Oryza sativa)谷粒产量的两个重要农艺性状。目前已发现许多单独调控这两个性状的 QTL 和基因,但同时调控这两个性状的 QTL 和基因却很少被发现。在这项研究中,我们对水稻进行了全基因组关联分析,发现了一个与谷粒和旗叶宽度相关的主要基因座--叶片和谷粒宽度(WLG)。WLG 编码一个 RING 域 E3 泛素连接酶。与 WLGhap.A 相比,WLGhap.B 有五个 SNP 变异,它编码的蛋白质泛素化活性增强,使水稻叶片宽度和谷粒大小增加,而 WLG 的突变则导致叶片更窄、谷粒更小。WLGhap.A和WLGhap.B都与HETC型E3连接酶LARGE2相互作用,但WLGhap.B与LARGE2的相互作用更强,因此与WLGhap.A相比,WLGhap.B对LARGE2的泛素化活性更高。wlg-1中LARGE2的功能缺失表征了large2-c在谷粒和叶宽方面的表现,表明WLG作用于LARGE2的上游。这些发现揭示了 WLG-LARGE2 模块介导水稻谷粒和叶片大小的遗传和分子机制,并表明 WLGhap.B 在提高水稻产量方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice
Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many QTLs and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five SNP variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity towards LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG–LARGE2 module mediates grain and leaf size in rice, and suggest the potential of WLGhap.B in improving rice yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The potato RNA metabolism machinery is targeted by the cyst nematode effector RHA1B for successful parasitism Turning the page on front matter: Wishing Nan Eckardt a joyful retirement. The transcription factor CAMTA2 interacts with the histone acetyltransferase GCN5 and regulates grain weight in wheat Membrane protein provision controls prothylakoid biogenesis in tobacco etioplasts Hijacking QSK1: How pathogens turn a plant defense guardian into an accomplice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1