{"title":"将数字孪生应用于动态生产调度:综述","authors":"Nada Ouahabi , Ahmed Chebak , Oulaid Kamach , Oussama Laayati , Mourad Zegrari","doi":"10.1016/j.rcim.2024.102778","DOIUrl":null,"url":null,"abstract":"<div><p>The digital twin is an emerging technology that enhances industrial digitalization, as it establishes a dynamic virtual model that emulates a specific phenomenon of the corresponding physical system, thus imparting added value in many manufacturing activities. Production scheduling is one of the manufacturing activities that can fulfill step-improvements from the digital twin. However, modest endeavors and discussions have been achieved in the application of the digital twin in production scheduling. To alleviate the scarcity of discussions on this topic, this paper provides a systematic review of the integration of the digital twin and dynamic production scheduling. First, this paper presents a summary of works related to digital twin-driven production scheduling. Subsequently, the paper investigates how to leverage the digital twin into production scheduling to improve its real-time capability, performance, and robustness within smart manufacturing systems such as sustainable manufacturing, zero-defect manufacturing, and human-centric manufacturing paradigms. Emphasis will then be placed on identifying research opportunities that need further investigation. Additionally, the paper discusses some manufacturing technologies that can be used in tandem to establish a shop floor digital twin encompassing both manufacturing assets and human resources. Finally, a conceptual digital twin framework is proposed to underpin future research.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"89 ","pages":"Article 102778"},"PeriodicalIF":9.1000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging digital twin into dynamic production scheduling: A review\",\"authors\":\"Nada Ouahabi , Ahmed Chebak , Oulaid Kamach , Oussama Laayati , Mourad Zegrari\",\"doi\":\"10.1016/j.rcim.2024.102778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The digital twin is an emerging technology that enhances industrial digitalization, as it establishes a dynamic virtual model that emulates a specific phenomenon of the corresponding physical system, thus imparting added value in many manufacturing activities. Production scheduling is one of the manufacturing activities that can fulfill step-improvements from the digital twin. However, modest endeavors and discussions have been achieved in the application of the digital twin in production scheduling. To alleviate the scarcity of discussions on this topic, this paper provides a systematic review of the integration of the digital twin and dynamic production scheduling. First, this paper presents a summary of works related to digital twin-driven production scheduling. Subsequently, the paper investigates how to leverage the digital twin into production scheduling to improve its real-time capability, performance, and robustness within smart manufacturing systems such as sustainable manufacturing, zero-defect manufacturing, and human-centric manufacturing paradigms. Emphasis will then be placed on identifying research opportunities that need further investigation. Additionally, the paper discusses some manufacturing technologies that can be used in tandem to establish a shop floor digital twin encompassing both manufacturing assets and human resources. Finally, a conceptual digital twin framework is proposed to underpin future research.</p></div>\",\"PeriodicalId\":21452,\"journal\":{\"name\":\"Robotics and Computer-integrated Manufacturing\",\"volume\":\"89 \",\"pages\":\"Article 102778\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Computer-integrated Manufacturing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0736584524000644\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524000644","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Leveraging digital twin into dynamic production scheduling: A review
The digital twin is an emerging technology that enhances industrial digitalization, as it establishes a dynamic virtual model that emulates a specific phenomenon of the corresponding physical system, thus imparting added value in many manufacturing activities. Production scheduling is one of the manufacturing activities that can fulfill step-improvements from the digital twin. However, modest endeavors and discussions have been achieved in the application of the digital twin in production scheduling. To alleviate the scarcity of discussions on this topic, this paper provides a systematic review of the integration of the digital twin and dynamic production scheduling. First, this paper presents a summary of works related to digital twin-driven production scheduling. Subsequently, the paper investigates how to leverage the digital twin into production scheduling to improve its real-time capability, performance, and robustness within smart manufacturing systems such as sustainable manufacturing, zero-defect manufacturing, and human-centric manufacturing paradigms. Emphasis will then be placed on identifying research opportunities that need further investigation. Additionally, the paper discusses some manufacturing technologies that can be used in tandem to establish a shop floor digital twin encompassing both manufacturing assets and human resources. Finally, a conceptual digital twin framework is proposed to underpin future research.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.