Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi Giuseppe Occhipinti
{"title":"超灵敏织物应变传感器重新定义了可穿戴式无声语音接口,具有极高的机器学习效率","authors":"Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi Giuseppe Occhipinti","doi":"10.1038/s41528-024-00315-1","DOIUrl":null,"url":null,"abstract":"This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy, high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of 317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture subtle throat movements, simplifying signal processing and enabling the use of a computationally efficient neural network. The resulting neural network, based on a one-dimensional convolutional model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in speech decoding. The synergy in sensor design and neural network optimization offers a promising solution for practical, wearable SSI systems, paving the way for seamless, natural silent communication in diverse settings.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00315-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive textile strain sensors redefine wearable silent speech interfaces with high machine learning efficiency\",\"authors\":\"Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi Giuseppe Occhipinti\",\"doi\":\"10.1038/s41528-024-00315-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy, high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of 317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture subtle throat movements, simplifying signal processing and enabling the use of a computationally efficient neural network. The resulting neural network, based on a one-dimensional convolutional model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in speech decoding. The synergy in sensor design and neural network optimization offers a promising solution for practical, wearable SSI systems, paving the way for seamless, natural silent communication in diverse settings.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00315-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00315-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00315-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ultrasensitive textile strain sensors redefine wearable silent speech interfaces with high machine learning efficiency
This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy, high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of 317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture subtle throat movements, simplifying signal processing and enabling the use of a computationally efficient neural network. The resulting neural network, based on a one-dimensional convolutional model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in speech decoding. The synergy in sensor design and neural network optimization offers a promising solution for practical, wearable SSI systems, paving the way for seamless, natural silent communication in diverse settings.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.