在 4-Fluorobenzylamine Hydroiodide 促进下,纹理化 Perovskite/硅串联太阳能电池的效率超过 30

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-05-02 DOI:10.1007/s40820-024-01406-4
Jingjing Liu, Biao Shi, Qiaojing Xu, Yucheng Li, Yuxiang Li, Pengfei Liu, Zetong SunLi, Xuejiao Wang, Cong Sun, Wei Han, Diannan Li, Sanlong Wang, Dekun Zhang, Guangwu Li, Xiaona Du, Ying Zhao, Xiaodan Zhang
{"title":"在 4-Fluorobenzylamine Hydroiodide 促进下,纹理化 Perovskite/硅串联太阳能电池的效率超过 30","authors":"Jingjing Liu, Biao Shi, Qiaojing Xu, Yucheng Li, Yuxiang Li, Pengfei Liu, Zetong SunLi, Xuejiao Wang, Cong Sun, Wei Han, Diannan Li, Sanlong Wang, Dekun Zhang, Guangwu Li, Xiaona Du, Ying Zhao, Xiaodan Zhang","doi":"10.1007/s40820-024-01406-4","DOIUrl":null,"url":null,"abstract":"<p>Monolithic textured perovskite/silicon tandem solar cells (TSCs) are expected to achieve maximum light capture at the lowest cost, potentially exhibiting the best power conversion efficiency. However, it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometer-size pyramids. Here, we introduced a bulky organic molecule (4-fluorobenzylamine hydroiodide (F-PMAI)) as a perovskite additive. It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F<sup>−</sup> and FA<sup>+</sup> and reduce (111) facet surface energy due to enhanced adsorption energy of F-PMAI on the (111) facet. Besides, the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth, which can passivate interface defects through strong interaction between F-PMA<sup>+</sup> and undercoordinated Pb<sup>2+</sup>/I<sup>−</sup>. As a result, the additive facilitates the formation of large perovskite grains and (111) preferred orientation with a reduced trap-state density, thereby promoting charge carrier transportation, and enhancing device performance and stability. The perovskite/silicon TSCs achieved a champion efficiency of 30.05% based on a silicon thin film tunneling junction. In addition, the devices exhibit excellent long-term thermal and light stability without encapsulation. This work provides an effective strategy for achieving efficient and stable TSCs.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide\",\"authors\":\"Jingjing Liu, Biao Shi, Qiaojing Xu, Yucheng Li, Yuxiang Li, Pengfei Liu, Zetong SunLi, Xuejiao Wang, Cong Sun, Wei Han, Diannan Li, Sanlong Wang, Dekun Zhang, Guangwu Li, Xiaona Du, Ying Zhao, Xiaodan Zhang\",\"doi\":\"10.1007/s40820-024-01406-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monolithic textured perovskite/silicon tandem solar cells (TSCs) are expected to achieve maximum light capture at the lowest cost, potentially exhibiting the best power conversion efficiency. However, it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometer-size pyramids. Here, we introduced a bulky organic molecule (4-fluorobenzylamine hydroiodide (F-PMAI)) as a perovskite additive. It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F<sup>−</sup> and FA<sup>+</sup> and reduce (111) facet surface energy due to enhanced adsorption energy of F-PMAI on the (111) facet. Besides, the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth, which can passivate interface defects through strong interaction between F-PMA<sup>+</sup> and undercoordinated Pb<sup>2+</sup>/I<sup>−</sup>. As a result, the additive facilitates the formation of large perovskite grains and (111) preferred orientation with a reduced trap-state density, thereby promoting charge carrier transportation, and enhancing device performance and stability. The perovskite/silicon TSCs achieved a champion efficiency of 30.05% based on a silicon thin film tunneling junction. In addition, the devices exhibit excellent long-term thermal and light stability without encapsulation. This work provides an effective strategy for achieving efficient and stable TSCs.</p>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-024-01406-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01406-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

单片纹理过氧化物/硅串联太阳能电池(TSCs)有望以最低的成本实现最大的光捕获量,并有可能表现出最佳的功率转换效率。然而,在具有微米尺寸金字塔的商用纹理硅衬底上制造高质量的过氧化物薄膜和优选晶体取向是一项挑战。在这里,我们引入了一种大分子有机物(4-氟苄胺氢碘酸盐(F-PMAI))作为包晶添加剂。研究发现,F-PMAI 可以通过 F- 和 FA+ 之间的氢键作用延缓包晶石薄膜的结晶过程,并由于 F-PMAI 在(111)面上的吸附能增强而降低(111)面的表面能。此外,晶体生长后,大分子被挤压到包晶薄膜的底部和顶部,通过 F-PMA+ 与欠配位 Pb2+/I- 之间的强相互作用,可以钝化界面缺陷。因此,添加剂有利于形成大的包晶晶粒和(111)优选取向,并降低捕获态密度,从而促进电荷载流子的传输,提高器件的性能和稳定性。在硅薄膜隧道结的基础上,透辉石/硅 TSC 的冠军效率达到了 30.05%。此外,这些器件在没有封装的情况下表现出卓越的长期热稳定性和光稳定性。这项工作为实现高效稳定的 TSCs 提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide

Monolithic textured perovskite/silicon tandem solar cells (TSCs) are expected to achieve maximum light capture at the lowest cost, potentially exhibiting the best power conversion efficiency. However, it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometer-size pyramids. Here, we introduced a bulky organic molecule (4-fluorobenzylamine hydroiodide (F-PMAI)) as a perovskite additive. It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F and FA+ and reduce (111) facet surface energy due to enhanced adsorption energy of F-PMAI on the (111) facet. Besides, the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth, which can passivate interface defects through strong interaction between F-PMA+ and undercoordinated Pb2+/I. As a result, the additive facilitates the formation of large perovskite grains and (111) preferred orientation with a reduced trap-state density, thereby promoting charge carrier transportation, and enhancing device performance and stability. The perovskite/silicon TSCs achieved a champion efficiency of 30.05% based on a silicon thin film tunneling junction. In addition, the devices exhibit excellent long-term thermal and light stability without encapsulation. This work provides an effective strategy for achieving efficient and stable TSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode: From O3-Type to O2-Type Structural Design. Injectable Nanorobot-Hydrogel Superstructure for Hemostasis and Anticancer Therapy of Spinal Metastasis. Boosting High-Voltage Practical Lithium Metal Batteries with Tailored Additives. Constructed Mott-Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O2 Battery. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1