Binan Zhao, Haoran Peng, Yanjing Zhang, Jie Zhang, Desheng Kong, Sai Cao, Yan Li, Dan Yang, Chuanwen Sun, Xinyi Pu, Ping Zhao, Yan Xu, Kai Zhao, Liangzhi Xie
{"title":"快速开发和大规模生产对仓鼠具有保护效力的 SARS-CoV-2 中和性鸡卵黄抗体。","authors":"Binan Zhao, Haoran Peng, Yanjing Zhang, Jie Zhang, Desheng Kong, Sai Cao, Yan Li, Dan Yang, Chuanwen Sun, Xinyi Pu, Ping Zhao, Yan Xu, Kai Zhao, Liangzhi Xie","doi":"10.1186/s40659-024-00508-y","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"24"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid development and mass production of SARS-CoV-2 neutralizing chicken egg yolk antibodies with protective efficacy in hamsters.\",\"authors\":\"Binan Zhao, Haoran Peng, Yanjing Zhang, Jie Zhang, Desheng Kong, Sai Cao, Yan Li, Dan Yang, Chuanwen Sun, Xinyi Pu, Ping Zhao, Yan Xu, Kai Zhao, Liangzhi Xie\",\"doi\":\"10.1186/s40659-024-00508-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":\"57 1\",\"pages\":\"24\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-024-00508-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-024-00508-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Rapid development and mass production of SARS-CoV-2 neutralizing chicken egg yolk antibodies with protective efficacy in hamsters.
Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.
期刊介绍:
Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.