Dengzhen Lu , Hengyi Li , Boyu Qiu , Siyuan Liu , Shuhan Qi
{"title":"基于虚拟现实和手势交互的化学模拟教学系统","authors":"Dengzhen Lu , Hengyi Li , Boyu Qiu , Siyuan Liu , Shuhan Qi","doi":"10.1016/j.vrih.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Most existing chemical experiment teaching systems lack solid immersive experiences, making it difficult to engage students. To address these challenges, we propose a chemical simulation teaching system based on virtual reality and gesture interaction.</p></div><div><h3>Methods</h3><p>The parameters of the models were obtained through actual investigation, whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine. By establishing an interface for the physics engine, gesture interaction hardware, and virtual reality (VR) helmet, a highly realistic chemical experiment environment was created. Using code script logic, particle systems, as well as other systems, chemical phenomena were simulated. Furthermore, we created an online teaching platform using streaming media and databases to address the problems of distance teaching.</p></div><div><h3>Results</h3><p>The proposed system was evaluated against two mainstream products in the market. In the experiments, the proposed system outperformed the other products in terms of fidelity and practicality.</p></div><div><h3>Conclusions</h3><p>The proposed system which offers realistic simulations and practicability, can help improve the high school chemistry experimental education.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 2","pages":"Pages 148-168"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209657962300061X/pdf?md5=5a61efaff7176636efdb6c186ffcfa7d&pid=1-s2.0-S209657962300061X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chemical simulation teaching system based on virtual reality and gesture interaction\",\"authors\":\"Dengzhen Lu , Hengyi Li , Boyu Qiu , Siyuan Liu , Shuhan Qi\",\"doi\":\"10.1016/j.vrih.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Most existing chemical experiment teaching systems lack solid immersive experiences, making it difficult to engage students. To address these challenges, we propose a chemical simulation teaching system based on virtual reality and gesture interaction.</p></div><div><h3>Methods</h3><p>The parameters of the models were obtained through actual investigation, whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine. By establishing an interface for the physics engine, gesture interaction hardware, and virtual reality (VR) helmet, a highly realistic chemical experiment environment was created. Using code script logic, particle systems, as well as other systems, chemical phenomena were simulated. Furthermore, we created an online teaching platform using streaming media and databases to address the problems of distance teaching.</p></div><div><h3>Results</h3><p>The proposed system was evaluated against two mainstream products in the market. In the experiments, the proposed system outperformed the other products in terms of fidelity and practicality.</p></div><div><h3>Conclusions</h3><p>The proposed system which offers realistic simulations and practicability, can help improve the high school chemistry experimental education.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":\"6 2\",\"pages\":\"Pages 148-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209657962300061X/pdf?md5=5a61efaff7176636efdb6c186ffcfa7d&pid=1-s2.0-S209657962300061X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209657962300061X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209657962300061X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
背景现有的化学实验教学系统大多缺乏扎实的沉浸式体验,难以吸引学生。为了应对这些挑战,我们提出了基于虚拟现实和手势交互的化学模拟教学系统。方法通过实际调查获得模型参数,然后使用 Blender 和 3DS MAX 进行建模,并将这些参数导入物理引擎。通过为物理引擎、手势交互硬件和虚拟现实(VR)头盔建立接口,创建了一个高度逼真的化学实验环境。利用代码脚本逻辑、粒子系统以及其他系统,模拟了化学现象。此外,我们还利用流媒体和数据库创建了一个在线教学平台,以解决远程教学的问题。在实验中,所提出的系统在逼真度和实用性方面均优于其他产品。结论所提出的系统具有逼真的模拟效果和实用性,有助于改善高中化学实验教学。
Chemical simulation teaching system based on virtual reality and gesture interaction
Background
Most existing chemical experiment teaching systems lack solid immersive experiences, making it difficult to engage students. To address these challenges, we propose a chemical simulation teaching system based on virtual reality and gesture interaction.
Methods
The parameters of the models were obtained through actual investigation, whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine. By establishing an interface for the physics engine, gesture interaction hardware, and virtual reality (VR) helmet, a highly realistic chemical experiment environment was created. Using code script logic, particle systems, as well as other systems, chemical phenomena were simulated. Furthermore, we created an online teaching platform using streaming media and databases to address the problems of distance teaching.
Results
The proposed system was evaluated against two mainstream products in the market. In the experiments, the proposed system outperformed the other products in terms of fidelity and practicality.
Conclusions
The proposed system which offers realistic simulations and practicability, can help improve the high school chemistry experimental education.