石墨烯基异质结构中的红外光探测:隧道势垒上的测光和热电效应

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj 2D Materials and Applications Pub Date : 2024-05-08 DOI:10.1038/s41699-024-00470-z
Dmitry A. Mylnikov, Mikhail A. Kashchenko, Kirill N. Kapralov, Davit A. Ghazaryan, Evgenii E. Vdovin, Sergey V. Morozov, Kostya S. Novoselov, Denis A. Bandurin, Alexander I. Chernov, Dmitry A. Svintsov
{"title":"石墨烯基异质结构中的红外光探测:隧道势垒上的测光和热电效应","authors":"Dmitry A. Mylnikov, Mikhail A. Kashchenko, Kirill N. Kapralov, Davit A. Ghazaryan, Evgenii E. Vdovin, Sergey V. Morozov, Kostya S. Novoselov, Denis A. Bandurin, Alexander I. Chernov, Dmitry A. Svintsov","doi":"10.1038/s41699-024-00470-z","DOIUrl":null,"url":null,"abstract":"Graphene/hBN/graphene tunnel devices offer promise as sensitive mid-infrared photodetectors but the microscopic origin underlying the photoresponse in them remains elusive. In this work, we investigated the photocurrent generation in graphene/hBN/graphene tunnel structures with localized defect states under mid-IR illumination. We demonstrate that the photocurrent in these devices is proportional to the second derivative of the tunnel current with respect to the bias voltage, peaking during tunneling through the hBN impurity level. We revealed that the origin of the photocurrent generation lies in the change of the tunneling probability upon radiation-induced electron heating in graphene layers, in agreement with the theoretical model that we developed. Finally, we show that at a finite bias voltage, the photocurrent is proportional to either of the graphene layers heating under the illumination, while at zero bias, it is proportional to the heating difference. Thus, the photocurrent in such devices can be used for accurate measurements of the electronic temperature, providing a convenient alternative to Johnson noise thermometry.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00470-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Infrared photodetection in graphene-based heterostructures: bolometric and thermoelectric effects at the tunneling barrier\",\"authors\":\"Dmitry A. Mylnikov, Mikhail A. Kashchenko, Kirill N. Kapralov, Davit A. Ghazaryan, Evgenii E. Vdovin, Sergey V. Morozov, Kostya S. Novoselov, Denis A. Bandurin, Alexander I. Chernov, Dmitry A. Svintsov\",\"doi\":\"10.1038/s41699-024-00470-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene/hBN/graphene tunnel devices offer promise as sensitive mid-infrared photodetectors but the microscopic origin underlying the photoresponse in them remains elusive. In this work, we investigated the photocurrent generation in graphene/hBN/graphene tunnel structures with localized defect states under mid-IR illumination. We demonstrate that the photocurrent in these devices is proportional to the second derivative of the tunnel current with respect to the bias voltage, peaking during tunneling through the hBN impurity level. We revealed that the origin of the photocurrent generation lies in the change of the tunneling probability upon radiation-induced electron heating in graphene layers, in agreement with the theoretical model that we developed. Finally, we show that at a finite bias voltage, the photocurrent is proportional to either of the graphene layers heating under the illumination, while at zero bias, it is proportional to the heating difference. Thus, the photocurrent in such devices can be used for accurate measurements of the electronic temperature, providing a convenient alternative to Johnson noise thermometry.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-024-00470-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-024-00470-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00470-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯/高纯比/石墨烯隧道器件有望成为灵敏的中红外光探测器,但其光电响应的微观起源仍然难以捉摸。在这项工作中,我们研究了具有局部缺陷态的石墨烯/hBN/石墨烯隧道结构在中红外光照下产生的光电流。我们证明,这些器件中的光电流与隧道电流相对于偏置电压的二阶导数成正比,并在隧道穿过 hBN 杂质层时达到峰值。我们揭示了光电流产生的根源在于石墨烯层中辐射诱导电子加热时隧道概率的变化,这与我们建立的理论模型一致。最后,我们证明了在有限偏置电压下,光电流与照明下石墨烯层中任何一层的加热程度成正比,而在零偏置下,光电流与加热差成正比。因此,此类器件中的光电流可用于精确测量电子温度,为约翰逊噪声测温法提供了一种便捷的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infrared photodetection in graphene-based heterostructures: bolometric and thermoelectric effects at the tunneling barrier
Graphene/hBN/graphene tunnel devices offer promise as sensitive mid-infrared photodetectors but the microscopic origin underlying the photoresponse in them remains elusive. In this work, we investigated the photocurrent generation in graphene/hBN/graphene tunnel structures with localized defect states under mid-IR illumination. We demonstrate that the photocurrent in these devices is proportional to the second derivative of the tunnel current with respect to the bias voltage, peaking during tunneling through the hBN impurity level. We revealed that the origin of the photocurrent generation lies in the change of the tunneling probability upon radiation-induced electron heating in graphene layers, in agreement with the theoretical model that we developed. Finally, we show that at a finite bias voltage, the photocurrent is proportional to either of the graphene layers heating under the illumination, while at zero bias, it is proportional to the heating difference. Thus, the photocurrent in such devices can be used for accurate measurements of the electronic temperature, providing a convenient alternative to Johnson noise thermometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
期刊最新文献
Revealing stacking order transition via nanomechanical resonator Controlled layer-by-layer assembly and structured coloration of Ti3C2Tz MXene/polyelectrolyte heterostructures Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: opportunities and challenges Light-driven electrodynamics and demagnetization in FenGeTe2 (n = 3, 5) thin films Achieving nearly barrier free transport in high mobility ReS2 phototransistors with van der Waals contacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1