{"title":"一阶扰动理论中氮分子总能量和屏蔽功能的计算机模拟","authors":"V. P. Koshcheev, Yu. N. Shtanov","doi":"10.1134/S1027451024020332","DOIUrl":null,"url":null,"abstract":"<p>Within the framework of a new approach to the problem of calculating the total energy of a diatomic molecule in first-order perturbation theory, it is shown that the potential-energy screening function is a solution to a diffusion-type equation in which the role of a time variable is played by the mean square of the amplitude of collective oscillations of electrons per degree of freedom. The total energy of a diatomic nitrogen molecule in the ground and excited states is calculated in first-order perturbation theory using tabulated eigenfunctions and eigenvalues of the energy of isolated atoms, which approximate solutions of the Hartree–Fock equation. The reliability of the numerical method for calculating the total energy of a diatomic nitrogen molecule in first-order perturbation theory is verified using an exact solution with an atomic form factor for the screened Coulomb potential. The new approach to the problem of calculating the total energy of a diatomic molecule in first-order perturbation theory does not contain free parameters, but is based on the numerical solution of a system of nonlinear equations.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 2","pages":"474 - 477"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer Simulation of the Total Energy and the Screening Function of a Nitrogen Molecule in First-Order Perturbation Theory\",\"authors\":\"V. P. Koshcheev, Yu. N. Shtanov\",\"doi\":\"10.1134/S1027451024020332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within the framework of a new approach to the problem of calculating the total energy of a diatomic molecule in first-order perturbation theory, it is shown that the potential-energy screening function is a solution to a diffusion-type equation in which the role of a time variable is played by the mean square of the amplitude of collective oscillations of electrons per degree of freedom. The total energy of a diatomic nitrogen molecule in the ground and excited states is calculated in first-order perturbation theory using tabulated eigenfunctions and eigenvalues of the energy of isolated atoms, which approximate solutions of the Hartree–Fock equation. The reliability of the numerical method for calculating the total energy of a diatomic nitrogen molecule in first-order perturbation theory is verified using an exact solution with an atomic form factor for the screened Coulomb potential. The new approach to the problem of calculating the total energy of a diatomic molecule in first-order perturbation theory does not contain free parameters, but is based on the numerical solution of a system of nonlinear equations.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"18 2\",\"pages\":\"474 - 477\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451024020332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024020332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Computer Simulation of the Total Energy and the Screening Function of a Nitrogen Molecule in First-Order Perturbation Theory
Within the framework of a new approach to the problem of calculating the total energy of a diatomic molecule in first-order perturbation theory, it is shown that the potential-energy screening function is a solution to a diffusion-type equation in which the role of a time variable is played by the mean square of the amplitude of collective oscillations of electrons per degree of freedom. The total energy of a diatomic nitrogen molecule in the ground and excited states is calculated in first-order perturbation theory using tabulated eigenfunctions and eigenvalues of the energy of isolated atoms, which approximate solutions of the Hartree–Fock equation. The reliability of the numerical method for calculating the total energy of a diatomic nitrogen molecule in first-order perturbation theory is verified using an exact solution with an atomic form factor for the screened Coulomb potential. The new approach to the problem of calculating the total energy of a diatomic molecule in first-order perturbation theory does not contain free parameters, but is based on the numerical solution of a system of nonlinear equations.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.