磁电纳米粒子对神经元电活动影响的建模:模拟电路方法

IF 1.6 4区 医学 Q4 BIOPHYSICS Biointerphases Pub Date : 2024-05-01 DOI:10.1116/5.0199163
Zeinab Ramezani, Victoria André, Sakhrat Khizroev
{"title":"磁电纳米粒子对神经元电活动影响的建模:模拟电路方法","authors":"Zeinab Ramezani, Victoria André, Sakhrat Khizroev","doi":"10.1116/5.0199163","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach.\",\"authors\":\"Zeinab Ramezani, Victoria André, Sakhrat Khizroev\",\"doi\":\"10.1116/5.0199163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0199163\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/5.0199163","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种物理神经元模型,该模型将磁电纳米粒子(MENPs)作为无线控制局部神经活动的重要电路元件。这种模型的出现非常重要,因为磁电纳米粒子由于其磁电效应,可以无线、无创地调节神经活动,这反过来又对寻找神经系统疾病的治疗方法和创建无线无创高分辨率脑机接口具有重要意义。当被置于神经元膜上时,MENPs 就像磁场控制的有限大小电偶极子,会随着磁场的变化在膜上产生局部电场,从而可控地激活局部离子通道并在局部启动动作电位。在这里,神经元电特性描述是基于离子通道激活和抑制机制。通过结合霍奇金-赫胥黎模型和单个 MENP 的等效电路模型,提取出基于 MENP 的记忆性霍奇金-赫胥黎电路模型。在该模型中,每个 MENP 都是神经元的组成部分,从而实现了对神经元电路本身的无线局部控制。此外,该模型还可扩展到多个 MENP,以描述神经系统中的集体效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach.

This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Influence of metal oxides on biocompatibility of additively manufactured NiTi. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins. Adsorption of cytochrome c on different self-assembled monolayers: The role of surface chemistry and charge density.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1