[科研成果转化为教学资源,提高教学效果--以药物分析课程色谱法教学为例]。

Li-Gai Bai, Bin Liu, Xiao-Qiang Qiao
{"title":"[科研成果转化为教学资源,提高教学效果--以药物分析课程色谱法教学为例]。","authors":"Li-Gai Bai, Bin Liu, Xiao-Qiang Qiao","doi":"10.3724/SP.J.1123.2023.12020","DOIUrl":null,"url":null,"abstract":"<p><p>The pharmaceutical analysis course is a three-dimensional knowledge network that connects several courses to form a new comprehensive knowledge node involving a large knowledge system and flexible knowledge structure. In this course, the subject of chromatography covers a wide range of topics. However, because accurate content is challenging to present, the teaching effect of this subject is poor. In this work, we sought to achieve the educational purpose of establishing morality and cultivating talent, as well as the goal of training highly skilled professionals, by taking the teaching of chromatography in the pharmaceutical analysis course as an example of transforming scientific research results into teaching resources. The resources obtained are integrated into the teaching process to provide innovative and scientific research ideas to students with the aim of not only helping them understand and master technical knowledge but also exercise their ability to raise and solve problems. Furthermore, we expound on how to introduce scientific development frontiers and formulate scientific problems through curriculum design. We also describe how our strategy can promote the teaching effect and achieve teaching objectives. Based on the characteristics of rapid knowledge update and equal emphasis on theory and practice in pharmaceutical analysis, the course is designed by introducing new advances in scientific development, formulating scientific problems, and adopting question- and problem-based learning methods for teaching. The teaching effect is then evaluated through diversified assessment, student feedback, and self-evaluation. The results show that the transformation of scientific research results into teaching resources plays a significant role in stimulating students' interest in learning, improving students' ability to solve problems, and achieving curriculum objectives, all of which greatly improve the teaching effect.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 5","pages":"487-493"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114179/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Transformation of scientific research results into teaching resources to improve the teaching effect: taking the teaching of the chromatographic method in the pharmaceutical analysis course as an example].\",\"authors\":\"Li-Gai Bai, Bin Liu, Xiao-Qiang Qiao\",\"doi\":\"10.3724/SP.J.1123.2023.12020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pharmaceutical analysis course is a three-dimensional knowledge network that connects several courses to form a new comprehensive knowledge node involving a large knowledge system and flexible knowledge structure. In this course, the subject of chromatography covers a wide range of topics. However, because accurate content is challenging to present, the teaching effect of this subject is poor. In this work, we sought to achieve the educational purpose of establishing morality and cultivating talent, as well as the goal of training highly skilled professionals, by taking the teaching of chromatography in the pharmaceutical analysis course as an example of transforming scientific research results into teaching resources. The resources obtained are integrated into the teaching process to provide innovative and scientific research ideas to students with the aim of not only helping them understand and master technical knowledge but also exercise their ability to raise and solve problems. Furthermore, we expound on how to introduce scientific development frontiers and formulate scientific problems through curriculum design. We also describe how our strategy can promote the teaching effect and achieve teaching objectives. Based on the characteristics of rapid knowledge update and equal emphasis on theory and practice in pharmaceutical analysis, the course is designed by introducing new advances in scientific development, formulating scientific problems, and adopting question- and problem-based learning methods for teaching. The teaching effect is then evaluated through diversified assessment, student feedback, and self-evaluation. The results show that the transformation of scientific research results into teaching resources plays a significant role in stimulating students' interest in learning, improving students' ability to solve problems, and achieving curriculum objectives, all of which greatly improve the teaching effect.</p>\",\"PeriodicalId\":101336,\"journal\":{\"name\":\"Se pu = Chinese journal of chromatography\",\"volume\":\"42 5\",\"pages\":\"487-493\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114179/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Se pu = Chinese journal of chromatography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1123.2023.12020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Se pu = Chinese journal of chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2023.12020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物分析课程是一个立体的知识网络,它将多门课程连接起来,形成一个新的综合性知识节点,涉及庞大的知识体系和灵活的知识结构。在这门课程中,色谱学科涉及的内容非常广泛。然而,由于准确的内容呈现具有一定的难度,该学科的教学效果较差。在这项工作中,我们以药物分析课程中的色谱法教学为例,将科研成果转化为教学资源,力求达到立德树人的教育目的和培养高技能专业人才的目标。将所获得的资源整合到教学过程中,为学生提供创新的科研思路,不仅帮助学生理解和掌握技术知识,还锻炼了学生提出问题和解决问题的能力。此外,我们还阐述了如何通过课程设计引入科学发展前沿,提出科学问题。我们还阐述了我们的策略如何促进教学效果,实现教学目标。根据药物分析知识更新快、理论与实践并重的特点,课程设计引入科学发展新进展,提出科学问题,并采用问题式和基于问题的学习方法进行教学。然后通过多元化的考核、学生反馈和自我评价来评价教学效果。结果表明,科研成果转化为教学资源,在激发学生学习兴趣、提高学生解决问题的能力、实现课程目标等方面发挥了重要作用,极大地提高了教学效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Transformation of scientific research results into teaching resources to improve the teaching effect: taking the teaching of the chromatographic method in the pharmaceutical analysis course as an example].

The pharmaceutical analysis course is a three-dimensional knowledge network that connects several courses to form a new comprehensive knowledge node involving a large knowledge system and flexible knowledge structure. In this course, the subject of chromatography covers a wide range of topics. However, because accurate content is challenging to present, the teaching effect of this subject is poor. In this work, we sought to achieve the educational purpose of establishing morality and cultivating talent, as well as the goal of training highly skilled professionals, by taking the teaching of chromatography in the pharmaceutical analysis course as an example of transforming scientific research results into teaching resources. The resources obtained are integrated into the teaching process to provide innovative and scientific research ideas to students with the aim of not only helping them understand and master technical knowledge but also exercise their ability to raise and solve problems. Furthermore, we expound on how to introduce scientific development frontiers and formulate scientific problems through curriculum design. We also describe how our strategy can promote the teaching effect and achieve teaching objectives. Based on the characteristics of rapid knowledge update and equal emphasis on theory and practice in pharmaceutical analysis, the course is designed by introducing new advances in scientific development, formulating scientific problems, and adopting question- and problem-based learning methods for teaching. The teaching effect is then evaluated through diversified assessment, student feedback, and self-evaluation. The results show that the transformation of scientific research results into teaching resources plays a significant role in stimulating students' interest in learning, improving students' ability to solve problems, and achieving curriculum objectives, all of which greatly improve the teaching effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Analysis of ischemic stroke biomarkers based on non-targeted metabolomics]. [Reform and exploration of the experimental teaching mode of teaching assistant and group rotation system: taking pharmaceutical analysis experiment course as an example]. [Research advance of solid-phase microextraction based on covalent organic framework materials]. [Simultaneous determination of 51 indazole-type synthetic cannabinoids in urine and blood by online solid-phase extraction-liquid chromatography-linear ion trap mass spectrometry]. [Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1