化繁为简:创新纳米农药的最小载体战略

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-05-14 DOI:10.1007/s40820-024-01413-5
Wenjie Shangguan, Qiliang Huang, Huiping Chen, Yingying Zheng, Pengyue Zhao, Chong Cao, Manli Yu, Yongsong Cao, Lidong Cao
{"title":"化繁为简:创新纳米农药的最小载体战略","authors":"Wenjie Shangguan, Qiliang Huang, Huiping Chen, Yingying Zheng, Pengyue Zhao, Chong Cao, Manli Yu, Yongsong Cao, Lidong Cao","doi":"10.1007/s40820-024-01413-5","DOIUrl":null,"url":null,"abstract":"<p>The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament. </p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides\",\"authors\":\"Wenjie Shangguan, Qiliang Huang, Huiping Chen, Yingying Zheng, Pengyue Zhao, Chong Cao, Manli Yu, Yongsong Cao, Lidong Cao\",\"doi\":\"10.1007/s40820-024-01413-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament. </p>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-024-01413-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01413-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

纳米技术的蓬勃发展为农业提供了无限机遇,尤其是在纳米农药研发领域。然而,人们对纳米农药中不加限制地使用非治疗性纳米材料所引发的人类和环境安全问题表示担忧。此外,当前基于纳米载体的纳米农药开发战略能否在投资与回报之间取得平衡,复杂的材料组成能否真正提高纳米农药的效率、安全性和循环性,也是一个重要的问题。在此,我们介绍了通过原药设计和分子自组装制备的具有最小化载体的纳米杀虫剂(NMC)的概念,并将其与采用非治疗性纳米材料作为载体的纳米杀虫剂(NNC)进行了比较。我们进一步总结了 NMC 目前的发展战略,并研究了其制备、性能和生产过程中可能面临的挑战。总之,我们认为 NMC 系统的开发可以成为催化纳米农药绿色高效革命的创新动力,为摆脱当前的困境提供一条出路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides

The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode: From O3-Type to O2-Type Structural Design. Injectable Nanorobot-Hydrogel Superstructure for Hemostasis and Anticancer Therapy of Spinal Metastasis. Boosting High-Voltage Practical Lithium Metal Batteries with Tailored Additives. Constructed Mott-Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O2 Battery. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1