学习复杂三维多孔介质中单相流的一般模型

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-05-10 DOI:10.1088/2632-2153/ad45af
Javier E Santos, Agnese Marcato, Qinjun Kang, Mohamed Mehana, Daniel O’Malley, Hari Viswanathan, Nicholas Lubbers
{"title":"学习复杂三维多孔介质中单相流的一般模型","authors":"Javier E Santos, Agnese Marcato, Qinjun Kang, Mohamed Mehana, Daniel O’Malley, Hari Viswanathan, Nicholas Lubbers","doi":"10.1088/2632-2153/ad45af","DOIUrl":null,"url":null,"abstract":"Modeling effective transport properties of 3D porous media, such as permeability, at multiple scales is challenging as a result of the combined complexity of the pore structures and fluid physics—in particular, confinement effects which vary across the nanoscale to the microscale. While numerical simulation is possible, the computational cost is prohibitive for realistic domains, which are large and complex. Although machine learning (ML) models have been proposed to circumvent simulation, none so far has simultaneously accounted for heterogeneous 3D structures, fluid confinement effects, and multiple simulation resolutions. By utilizing numerous computer science techniques to improve the scalability of training, we have for the first time developed a general flow model that accounts for the pore-structure and corresponding physical phenomena at scales from Angstrom to the micrometer. Using synthetic computational domains for training, our ML model exhibits strong performance (<italic toggle=\"yes\">R</italic>\n<sup>2</sup> = 0.9) when tested on extremely diverse real domains at multiple scales.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning a general model of single phase flow in complex 3D porous media\",\"authors\":\"Javier E Santos, Agnese Marcato, Qinjun Kang, Mohamed Mehana, Daniel O’Malley, Hari Viswanathan, Nicholas Lubbers\",\"doi\":\"10.1088/2632-2153/ad45af\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling effective transport properties of 3D porous media, such as permeability, at multiple scales is challenging as a result of the combined complexity of the pore structures and fluid physics—in particular, confinement effects which vary across the nanoscale to the microscale. While numerical simulation is possible, the computational cost is prohibitive for realistic domains, which are large and complex. Although machine learning (ML) models have been proposed to circumvent simulation, none so far has simultaneously accounted for heterogeneous 3D structures, fluid confinement effects, and multiple simulation resolutions. By utilizing numerous computer science techniques to improve the scalability of training, we have for the first time developed a general flow model that accounts for the pore-structure and corresponding physical phenomena at scales from Angstrom to the micrometer. Using synthetic computational domains for training, our ML model exhibits strong performance (<italic toggle=\\\"yes\\\">R</italic>\\n<sup>2</sup> = 0.9) when tested on extremely diverse real domains at multiple scales.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad45af\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad45af","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于孔隙结构和流体物理--尤其是从纳米尺度到微米尺度各不相同的约束效应--的综合复杂性,对三维多孔介质的有效传输特性(如渗透性)进行多尺度建模极具挑战性。虽然可以进行数值模拟,但对于庞大而复杂的现实领域来说,计算成本过高。虽然已经提出了机器学习(ML)模型来规避模拟,但迄今为止还没有一个模型能同时考虑异质三维结构、流体约束效应和多种模拟分辨率。通过利用大量计算机科学技术来提高训练的可扩展性,我们首次开发了一种通用流动模型,该模型考虑了从埃到微米尺度上的孔隙结构和相应的物理现象。我们的 ML 模型使用合成计算域进行训练,在多种尺度的极其多样化的真实域上进行测试时,表现出很强的性能(R2 = 0.9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning a general model of single phase flow in complex 3D porous media
Modeling effective transport properties of 3D porous media, such as permeability, at multiple scales is challenging as a result of the combined complexity of the pore structures and fluid physics—in particular, confinement effects which vary across the nanoscale to the microscale. While numerical simulation is possible, the computational cost is prohibitive for realistic domains, which are large and complex. Although machine learning (ML) models have been proposed to circumvent simulation, none so far has simultaneously accounted for heterogeneous 3D structures, fluid confinement effects, and multiple simulation resolutions. By utilizing numerous computer science techniques to improve the scalability of training, we have for the first time developed a general flow model that accounts for the pore-structure and corresponding physical phenomena at scales from Angstrom to the micrometer. Using synthetic computational domains for training, our ML model exhibits strong performance (R 2 = 0.9) when tested on extremely diverse real domains at multiple scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1