{"title":"刚性冲床下的谐波裂纹基板分析","authors":"Hailiang Ma, Yueting Zhou, Xu Wang, Xing Li, Shenghu Ding","doi":"10.1007/s10704-024-00782-7","DOIUrl":null,"url":null,"abstract":"<div><p>The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"73 - 86"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a cracked harmonic substrate under a rigid punch\",\"authors\":\"Hailiang Ma, Yueting Zhou, Xu Wang, Xing Li, Shenghu Ding\",\"doi\":\"10.1007/s10704-024-00782-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.</p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"247 1\",\"pages\":\"73 - 86\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-024-00782-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00782-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of a cracked harmonic substrate under a rigid punch
The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.