Md Abu Mosa, Huijune Kang, Jeong Yeop Jo, Jinho Bang, Dal Ahn, Youna Jang, Kye-Si Kwon
{"title":"通过电镀金提高气溶胶喷射印刷射频螺旋电感器的品质因数","authors":"Md Abu Mosa, Huijune Kang, Jeong Yeop Jo, Jinho Bang, Dal Ahn, Youna Jang, Kye-Si Kwon","doi":"10.1088/2058-8585/ad4610","DOIUrl":null,"url":null,"abstract":"Aerosol jet printing (AJP) outperforms inkjet printing by significantly reducing printed line width, effectively addressing issues such as bulging and surface irregularities. This technology allows for line widths as narrow as 10–100 <italic toggle=\"yes\">μ</italic>m with high aspect ratios, making it well-suited for radio frequency (RF) applications. Consequently, AJP emerges as a valuable tool for direct printing in RF applications. Among conductive inks, silver nanoparticle (Ag-NP) ink is preferred for its straightforward direct printing process and lower sintering temperature requirements. However, the conductivity of printed Ag NP traces falls markedly below that of bulk silver due to significant porosity, limiting its use in RF applications where a high-quality factor is essential. The quality factor of an inductor, indicative of its efficiency in energy storage and release, inversely correlates with its resistance. Our research combines AJP with selective electroplating to reduce the resistance of printed traces, thereby enhancing the inductor’s quality factor for RF applications. We fabricated spiral inductors on alumina substrates using silver NP ink and subsequently applied selective gold electroplating to these traces. This approach led to a significant increase in the inductors’ quality factor, improving it by a factor of 3–5 in the RF frequency range of 100–700 MHz.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"45 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the quality factor of aerosol jet printed RF spiral inductors through gold electroplating\",\"authors\":\"Md Abu Mosa, Huijune Kang, Jeong Yeop Jo, Jinho Bang, Dal Ahn, Youna Jang, Kye-Si Kwon\",\"doi\":\"10.1088/2058-8585/ad4610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerosol jet printing (AJP) outperforms inkjet printing by significantly reducing printed line width, effectively addressing issues such as bulging and surface irregularities. This technology allows for line widths as narrow as 10–100 <italic toggle=\\\"yes\\\">μ</italic>m with high aspect ratios, making it well-suited for radio frequency (RF) applications. Consequently, AJP emerges as a valuable tool for direct printing in RF applications. Among conductive inks, silver nanoparticle (Ag-NP) ink is preferred for its straightforward direct printing process and lower sintering temperature requirements. However, the conductivity of printed Ag NP traces falls markedly below that of bulk silver due to significant porosity, limiting its use in RF applications where a high-quality factor is essential. The quality factor of an inductor, indicative of its efficiency in energy storage and release, inversely correlates with its resistance. Our research combines AJP with selective electroplating to reduce the resistance of printed traces, thereby enhancing the inductor’s quality factor for RF applications. We fabricated spiral inductors on alumina substrates using silver NP ink and subsequently applied selective gold electroplating to these traces. This approach led to a significant increase in the inductors’ quality factor, improving it by a factor of 3–5 in the RF frequency range of 100–700 MHz.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/ad4610\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/ad4610","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the quality factor of aerosol jet printed RF spiral inductors through gold electroplating
Aerosol jet printing (AJP) outperforms inkjet printing by significantly reducing printed line width, effectively addressing issues such as bulging and surface irregularities. This technology allows for line widths as narrow as 10–100 μm with high aspect ratios, making it well-suited for radio frequency (RF) applications. Consequently, AJP emerges as a valuable tool for direct printing in RF applications. Among conductive inks, silver nanoparticle (Ag-NP) ink is preferred for its straightforward direct printing process and lower sintering temperature requirements. However, the conductivity of printed Ag NP traces falls markedly below that of bulk silver due to significant porosity, limiting its use in RF applications where a high-quality factor is essential. The quality factor of an inductor, indicative of its efficiency in energy storage and release, inversely correlates with its resistance. Our research combines AJP with selective electroplating to reduce the resistance of printed traces, thereby enhancing the inductor’s quality factor for RF applications. We fabricated spiral inductors on alumina substrates using silver NP ink and subsequently applied selective gold electroplating to these traces. This approach led to a significant increase in the inductors’ quality factor, improving it by a factor of 3–5 in the RF frequency range of 100–700 MHz.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.