作为神经解剖学教育资源的三维模型:利用三维图像和摄影测量扫描逐步解剖白质。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-11-01 Epub Date: 2024-05-16 DOI:10.1007/s10548-024-01058-y
André S B Oliveira, João Vitor A Fernandes, Vera Louise F A Figueiredo, Luciano C P C Leonel, Megan M J Bauman, Michael J Link, Maria Peris-Celda
{"title":"作为神经解剖学教育资源的三维模型:利用三维图像和摄影测量扫描逐步解剖白质。","authors":"André S B Oliveira, João Vitor A Fernandes, Vera Louise F A Figueiredo, Luciano C P C Leonel, Megan M J Bauman, Michael J Link, Maria Peris-Celda","doi":"10.1007/s10548-024-01058-y","DOIUrl":null,"url":null,"abstract":"<p><p>White matter dissection (WMD) involves isolating bundles of myelinated axons in the brain and serves to gain insights into brain function and neural mechanisms underlying neurological disorders. While effective, cadaveric brain dissections pose certain challenges mainly due to availability of resources. Technological advancements, such as photogrammetry, have the potential to overcome these limitations by creating detailed three-dimensional (3D) models for immersive learning experiences in neuroanatomy. This study aimed to provide a detailed step-by-step WMD captured using two-dimensional (2D) images and 3D models (via photogrammetry) to serve as a comprehensive guide for studying white matter tracts of the brain. One formalin-fixed brain specimen was utilized to perform the WMD. The brain was divided in a sagittal plane and both cerebral hemispheres were stored in a freezer at -20 °C for 10 days, then thawed under running water at room temperature. Micro-instruments under an operating microscope were used to perform a systematic lateral-to-medial and medial-to-lateral dissection, while 2D images were captured and 3D models were created through photogrammetry during each stage of the dissection. Dissection was performed with comprehensive examination of the location, main landmarks, connections, and functions of the white matter tracts of the brain. Furthermore, high-quality 3D models of the dissections were created and housed on SketchFab<sup>®</sup>, allowing for accessible and free of charge viewing for educational and research purposes. Our comprehensive dissection and 3D models have the potential to increase understanding of the intricate white matter anatomy and could provide an accessible platform for the teaching of neuroanatomy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Models as a Source for Neuroanatomy Education: A Stepwise White Matter Dissection Using 3D Images and Photogrammetry Scans.\",\"authors\":\"André S B Oliveira, João Vitor A Fernandes, Vera Louise F A Figueiredo, Luciano C P C Leonel, Megan M J Bauman, Michael J Link, Maria Peris-Celda\",\"doi\":\"10.1007/s10548-024-01058-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White matter dissection (WMD) involves isolating bundles of myelinated axons in the brain and serves to gain insights into brain function and neural mechanisms underlying neurological disorders. While effective, cadaveric brain dissections pose certain challenges mainly due to availability of resources. Technological advancements, such as photogrammetry, have the potential to overcome these limitations by creating detailed three-dimensional (3D) models for immersive learning experiences in neuroanatomy. This study aimed to provide a detailed step-by-step WMD captured using two-dimensional (2D) images and 3D models (via photogrammetry) to serve as a comprehensive guide for studying white matter tracts of the brain. One formalin-fixed brain specimen was utilized to perform the WMD. The brain was divided in a sagittal plane and both cerebral hemispheres were stored in a freezer at -20 °C for 10 days, then thawed under running water at room temperature. Micro-instruments under an operating microscope were used to perform a systematic lateral-to-medial and medial-to-lateral dissection, while 2D images were captured and 3D models were created through photogrammetry during each stage of the dissection. Dissection was performed with comprehensive examination of the location, main landmarks, connections, and functions of the white matter tracts of the brain. Furthermore, high-quality 3D models of the dissections were created and housed on SketchFab<sup>®</sup>, allowing for accessible and free of charge viewing for educational and research purposes. Our comprehensive dissection and 3D models have the potential to increase understanding of the intricate white matter anatomy and could provide an accessible platform for the teaching of neuroanatomy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01058-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01058-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

白质解剖(WMD)涉及分离大脑中的髓鞘轴突束,有助于深入了解大脑功能和神经系统疾病的神经机制。尸体脑解剖虽然有效,但也存在一定的挑战,主要原因是资源的可用性。摄影测量等技术的进步有可能克服这些限制,创建详细的三维(3D)模型,为神经解剖学提供身临其境的学习体验。本研究旨在利用二维(2D)图像和三维模型(通过摄影测量法)提供详细的分步WMD捕获,作为研究脑白质束的综合指南。利用一个福尔马林固定的大脑标本进行 WMD。大脑在矢状面上被分割,两个大脑半球在零下 20 摄氏度的冷冻箱中保存 10 天,然后在室温的流水下解冻。在手术显微镜下使用显微器械对大脑进行从外侧到内侧、从内侧到外侧的系统解剖,同时在解剖的每个阶段捕捉二维图像并通过摄影测量创建三维模型。解剖过程中对大脑白质束的位置、主要标志、连接和功能进行了全面检查。此外,我们还创建了高质量的三维解剖模型,并将其保存在 SketchFab® 上,供教育和研究人员免费查看。我们的综合解剖和三维模型有可能增加人们对复杂的脑白质解剖的理解,并为神经解剖学教学提供一个可访问的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Models as a Source for Neuroanatomy Education: A Stepwise White Matter Dissection Using 3D Images and Photogrammetry Scans.

White matter dissection (WMD) involves isolating bundles of myelinated axons in the brain and serves to gain insights into brain function and neural mechanisms underlying neurological disorders. While effective, cadaveric brain dissections pose certain challenges mainly due to availability of resources. Technological advancements, such as photogrammetry, have the potential to overcome these limitations by creating detailed three-dimensional (3D) models for immersive learning experiences in neuroanatomy. This study aimed to provide a detailed step-by-step WMD captured using two-dimensional (2D) images and 3D models (via photogrammetry) to serve as a comprehensive guide for studying white matter tracts of the brain. One formalin-fixed brain specimen was utilized to perform the WMD. The brain was divided in a sagittal plane and both cerebral hemispheres were stored in a freezer at -20 °C for 10 days, then thawed under running water at room temperature. Micro-instruments under an operating microscope were used to perform a systematic lateral-to-medial and medial-to-lateral dissection, while 2D images were captured and 3D models were created through photogrammetry during each stage of the dissection. Dissection was performed with comprehensive examination of the location, main landmarks, connections, and functions of the white matter tracts of the brain. Furthermore, high-quality 3D models of the dissections were created and housed on SketchFab®, allowing for accessible and free of charge viewing for educational and research purposes. Our comprehensive dissection and 3D models have the potential to increase understanding of the intricate white matter anatomy and could provide an accessible platform for the teaching of neuroanatomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1