加强肝癌治疗:探索磁性纳米粒子的频率效应,利用微波进行肿瘤热疗

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-05-16 DOI:10.1016/j.ijthermalsci.2024.109154
Soheil S. Fakhradini, Mehdi Mosharaf-Dehkordi, Hossein Ahmadikia
{"title":"加强肝癌治疗:探索磁性纳米粒子的频率效应,利用微波进行肿瘤热疗","authors":"Soheil S. Fakhradini,&nbsp;Mehdi Mosharaf-Dehkordi,&nbsp;Hossein Ahmadikia","doi":"10.1016/j.ijthermalsci.2024.109154","DOIUrl":null,"url":null,"abstract":"<div><p>The comprehension of heat transfer mechanisms and their profound implications on biological heat transfer is of paramount importance in the advancement of cancer treatments across all types of malignancies. In the present study, the intricate interplay between Pennes' biothermal principles, Maxwell's electromagnetic equations, and heat generation via a one-slot microwave antenna is resolved numerically. By administering magnetite nanoparticles into malignant tumors, an induced field is engendered, ultimately leading to tumor ablation. By manipulating the microwave frequency, the resultant field is assessed to ascertain the optimal therapeutic modality for this dangerous ailment. The investigation incorporates varying volume percentages of nanoparticles, namely 0.1, 0.05, 0.01, and 0.005 percent, yielding tumor necrosis durations of 2.8, 7.3, 34, and 69 s, respectively. Furthermore, the loss of healthy tissue is quantified as 4.8 %, 15.4 %, 65 %, and 139 %, respectively. Consequently, a direct correlation emerges between the percentage of nanoparticles employed and the diminished treatment duration, as well as reduced adverse effects on healthy tissues, leading to improved patient comfort and minimized thermal-induced injury. Additionally, the influence of frequency within the microwave range (0.3–10 GHz) is probed. Accordingly, when the nanoparticles are injected into the tumor, the frequency has no meaningful difference in the treatment result.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing liver cancer treatment: Exploring the frequency effects of magnetic nanoparticles for heat-based tumor therapy with microwaves\",\"authors\":\"Soheil S. Fakhradini,&nbsp;Mehdi Mosharaf-Dehkordi,&nbsp;Hossein Ahmadikia\",\"doi\":\"10.1016/j.ijthermalsci.2024.109154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The comprehension of heat transfer mechanisms and their profound implications on biological heat transfer is of paramount importance in the advancement of cancer treatments across all types of malignancies. In the present study, the intricate interplay between Pennes' biothermal principles, Maxwell's electromagnetic equations, and heat generation via a one-slot microwave antenna is resolved numerically. By administering magnetite nanoparticles into malignant tumors, an induced field is engendered, ultimately leading to tumor ablation. By manipulating the microwave frequency, the resultant field is assessed to ascertain the optimal therapeutic modality for this dangerous ailment. The investigation incorporates varying volume percentages of nanoparticles, namely 0.1, 0.05, 0.01, and 0.005 percent, yielding tumor necrosis durations of 2.8, 7.3, 34, and 69 s, respectively. Furthermore, the loss of healthy tissue is quantified as 4.8 %, 15.4 %, 65 %, and 139 %, respectively. Consequently, a direct correlation emerges between the percentage of nanoparticles employed and the diminished treatment duration, as well as reduced adverse effects on healthy tissues, leading to improved patient comfort and minimized thermal-induced injury. Additionally, the influence of frequency within the microwave range (0.3–10 GHz) is probed. Accordingly, when the nanoparticles are injected into the tumor, the frequency has no meaningful difference in the treatment result.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292400276X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400276X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

理解热传导机制及其对生物热传导的深远影响,对于推进各类恶性肿瘤的治疗至关重要。本研究通过数值方法解决了彭斯生物热原理、麦克斯韦电磁方程和单槽微波天线发热之间错综复杂的相互作用。通过向恶性肿瘤中注入磁铁矿纳米粒子,产生诱导场,最终导致肿瘤消融。通过操纵微波频率,对产生的场进行评估,以确定治疗这种危险疾病的最佳方法。这项研究采用了不同体积百分比的纳米粒子,即 0.1%、0.05%、0.01% 和 0.005%,所产生的肿瘤坏死持续时间分别为 2.8 秒、7.3 秒、34 秒和 69 秒。此外,健康组织的损失分别为 4.8%、15.4%、65% 和 139%。因此,采用纳米粒子的百分比与缩短治疗时间以及减少对健康组织的不良影响之间存在直接关系,从而提高了患者的舒适度,并将热引起的损伤降至最低。此外,还对微波范围(0.3-10 千兆赫)内频率的影响进行了研究。因此,当纳米粒子注入肿瘤时,频率对治疗效果没有明显影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing liver cancer treatment: Exploring the frequency effects of magnetic nanoparticles for heat-based tumor therapy with microwaves

The comprehension of heat transfer mechanisms and their profound implications on biological heat transfer is of paramount importance in the advancement of cancer treatments across all types of malignancies. In the present study, the intricate interplay between Pennes' biothermal principles, Maxwell's electromagnetic equations, and heat generation via a one-slot microwave antenna is resolved numerically. By administering magnetite nanoparticles into malignant tumors, an induced field is engendered, ultimately leading to tumor ablation. By manipulating the microwave frequency, the resultant field is assessed to ascertain the optimal therapeutic modality for this dangerous ailment. The investigation incorporates varying volume percentages of nanoparticles, namely 0.1, 0.05, 0.01, and 0.005 percent, yielding tumor necrosis durations of 2.8, 7.3, 34, and 69 s, respectively. Furthermore, the loss of healthy tissue is quantified as 4.8 %, 15.4 %, 65 %, and 139 %, respectively. Consequently, a direct correlation emerges between the percentage of nanoparticles employed and the diminished treatment duration, as well as reduced adverse effects on healthy tissues, leading to improved patient comfort and minimized thermal-induced injury. Additionally, the influence of frequency within the microwave range (0.3–10 GHz) is probed. Accordingly, when the nanoparticles are injected into the tumor, the frequency has no meaningful difference in the treatment result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1