排序基因型、环境、管理对玉米最佳施氮率的影响:种植系统建模分析

IF 2 3区 农林科学 Q2 AGRONOMY Agronomy Journal Pub Date : 2024-05-15 DOI:10.1002/agj2.21596
Mitchell E. Baum, John E. Sawyer, Michael J. Castellano, Sotirios V. Archontoulis
{"title":"排序基因型、环境、管理对玉米最佳施氮率的影响:种植系统建模分析","authors":"Mitchell E. Baum,&nbsp;John E. Sawyer,&nbsp;Michael J. Castellano,&nbsp;Sotirios V. Archontoulis","doi":"10.1002/agj2.21596","DOIUrl":null,"url":null,"abstract":"<p>Ranking the contribution of genotype, environment, and management (G × E × M) on maize's economic optimum nitrogen fertilizer rate (EONR) variability could improve understanding and predictability of EONR. We performed a simulation experiment using the Agricultural Production Systems sIMulator model with the objectives to (1) rank the effects of 24 individual G × E × M factors on the magnitude and interannual variability of the EONR across the US Midwest and (2) investigate the impact of G × M factors on the EONR variability under present and future climate scenarios. Results indicate that genetics (27%), management (31%), and environmental conditions (41%) each influence the EONR variability. Within these broad categories, the top three individual factors impacting the EONR were interannual weather variability, crop radiation use efficiency, and the soil inorganic N carryover from the previous year. The G × E × M factors influenced the yield response to N fertilizer in different ways. Soil-related factors (e.g., organic matter and residual nitrate) influenced grain yields at the low N rates, while management factors (e.g., planting date and density) influenced yield at all N rates. Combining increases in plant density and changes in genetics synergistically increased the EONR by 15% from baseline. Future climate scenarios without adaptation decreased the EONR and yield loss, but crop adaptation was buffered against the negative climate change impacts. We concluded that 59% of the annual EONR variability is manageable (due to genetics and management) and that G × M factors could buffer climate change's negative effects on crop production. Present results can inform experimental research on N fertilizer and N rate decisions.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21596","citationCount":"0","resultStr":"{\"title\":\"Ranking genotype, environment, management effects on the optimum nitrogen rate for maize: A cropping system modeling analysis\",\"authors\":\"Mitchell E. Baum,&nbsp;John E. Sawyer,&nbsp;Michael J. Castellano,&nbsp;Sotirios V. Archontoulis\",\"doi\":\"10.1002/agj2.21596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ranking the contribution of genotype, environment, and management (G × E × M) on maize's economic optimum nitrogen fertilizer rate (EONR) variability could improve understanding and predictability of EONR. We performed a simulation experiment using the Agricultural Production Systems sIMulator model with the objectives to (1) rank the effects of 24 individual G × E × M factors on the magnitude and interannual variability of the EONR across the US Midwest and (2) investigate the impact of G × M factors on the EONR variability under present and future climate scenarios. Results indicate that genetics (27%), management (31%), and environmental conditions (41%) each influence the EONR variability. Within these broad categories, the top three individual factors impacting the EONR were interannual weather variability, crop radiation use efficiency, and the soil inorganic N carryover from the previous year. The G × E × M factors influenced the yield response to N fertilizer in different ways. Soil-related factors (e.g., organic matter and residual nitrate) influenced grain yields at the low N rates, while management factors (e.g., planting date and density) influenced yield at all N rates. Combining increases in plant density and changes in genetics synergistically increased the EONR by 15% from baseline. Future climate scenarios without adaptation decreased the EONR and yield loss, but crop adaptation was buffered against the negative climate change impacts. We concluded that 59% of the annual EONR variability is manageable (due to genetics and management) and that G × M factors could buffer climate change's negative effects on crop production. Present results can inform experimental research on N fertilizer and N rate decisions.</p>\",\"PeriodicalId\":7522,\"journal\":{\"name\":\"Agronomy Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21596\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21596\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21596","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

对基因型、环境和管理(G × E × M)对玉米经济最适氮肥施用量(EONR)变异的贡献进行排序可提高对 EONR 的理解和预测能力。我们利用农业生产系统 sIMulator 模型进行了模拟实验,目的是:(1) 对美国中西部地区 24 个 G × E × M 因素对 EONR 的大小和年际变异性的影响进行排序;(2) 研究 G × M 因素在当前和未来气候情景下对 EONR 变异性的影响。结果表明,遗传(27%)、管理(31%)和环境条件(41%)分别对EONR的变异性产生影响。在这几大类因素中,影响 EONR 的前三个单个因素分别是年际天气变化、作物辐射利用效率和前一年的土壤无机氮结转。G × E × M 因素以不同方式影响产量对氮肥的反应。与土壤有关的因素(如有机质和残留硝酸盐)影响低氮肥率下的谷物产量,而管理因素(如播种日期和密度)则影响所有氮肥率下的产量。植物密度的增加与遗传学的变化相结合,协同作用下,EONR 比基线提高了 15%。在没有适应性的未来气候情景下,EONR 和产量损失都有所下降,但作物适应性对气候变化的负面影响起到了缓冲作用。我们的结论是,59%的年度EONR变化是可控的(由于遗传和管理),G × M因素可以缓冲气候变化对作物生产的负面影响。目前的研究结果可为有关氮肥和氮用量决策的实验研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ranking genotype, environment, management effects on the optimum nitrogen rate for maize: A cropping system modeling analysis

Ranking the contribution of genotype, environment, and management (G × E × M) on maize's economic optimum nitrogen fertilizer rate (EONR) variability could improve understanding and predictability of EONR. We performed a simulation experiment using the Agricultural Production Systems sIMulator model with the objectives to (1) rank the effects of 24 individual G × E × M factors on the magnitude and interannual variability of the EONR across the US Midwest and (2) investigate the impact of G × M factors on the EONR variability under present and future climate scenarios. Results indicate that genetics (27%), management (31%), and environmental conditions (41%) each influence the EONR variability. Within these broad categories, the top three individual factors impacting the EONR were interannual weather variability, crop radiation use efficiency, and the soil inorganic N carryover from the previous year. The G × E × M factors influenced the yield response to N fertilizer in different ways. Soil-related factors (e.g., organic matter and residual nitrate) influenced grain yields at the low N rates, while management factors (e.g., planting date and density) influenced yield at all N rates. Combining increases in plant density and changes in genetics synergistically increased the EONR by 15% from baseline. Future climate scenarios without adaptation decreased the EONR and yield loss, but crop adaptation was buffered against the negative climate change impacts. We concluded that 59% of the annual EONR variability is manageable (due to genetics and management) and that G × M factors could buffer climate change's negative effects on crop production. Present results can inform experimental research on N fertilizer and N rate decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy Journal
Agronomy Journal 农林科学-农艺学
CiteScore
4.70
自引率
9.50%
发文量
265
审稿时长
4.8 months
期刊介绍: After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.
期刊最新文献
Influence of crop management on stability rye yield and some grain quality traits Irrigated corn yield and soil phosphorus response to long‐term phosphorus fertilization Empirical comparison of genomic selection to phenotypic selection for biomass yield of switchgrass Can manure application method and timing with cover crops reduce NH3 and N2O gas losses and sustain corn yield? Orchids phytochemistry, biology and horticulture: Fundamentals and applicationsJean‐MichelMerillon, HippolyteKodja (Eds.), Switzerland: Springer. 2022. pp. 662. $1058.80 paperback. ISBN: 978‐3030383916
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1