{"title":"掺杂 Co2+ 对金属钨酸镍(NiWO4)正极材料电化学特性的影响","authors":"Jing Tang, Hui Xu, Yong Chen, Yuanqiang Zhu","doi":"10.1007/s13391-024-00493-0","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, transition metal tungstates are emerging as electroactive materials for supercapacitors due to their excellent electrical conductivity and electrochemical properties. Small amounts of transition metal ions doping can affect the physical and electrical properties of transition metal tungstates. In this study, Co ion-doped NiWO<sub>4</sub> amorphous composites (CNWO) were synthesized using a simple and effective hydrothermal method and utilized as the cathode material for supercapacitors. The structure and electrochemical properties of NiWO<sub>4</sub> and CNWO composites were investigated using various testing techniques. Specifically, when the cobalt ion doping amount is 10%, the corresponding CNWO-10 electrode material exhibits a specific capacitance of 804 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, and at a current density of 10 A g<sup>−1</sup>, the capacitance retention rate reaches 66.7%, demonstrating good rate performance. Additionally, an asymmetric supercapacitor device was constructed using CNWO-10 and activated carbon (AC) as positive and negative materials, respectively. Which could cycle reversibly under a potential window of 2.1 V. The device demonstrates a maximum specific capacitance of 76.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, and a high energy density of 47 Wh kg<sup>−1</sup> at a power density of 527 W kg<sup>−1</sup>. Furthermore, 96% capacitance cycling stability is maintained after 5500 cycles at a trapezoidal current density. Moreover, the electrical conductivities of NiWO<sub>4</sub> and CNWO-10 samples are 9.01 × 10<sup>–8</sup> S m<sup>−1</sup> and 8.93 × 10<sup>–6</sup> S m<sup>−1</sup>, attributed to the Co ion-doping that can reduce the gap width of the forbidden band to enhance conductivity. These results suggest that CNWO composites can serve as promising high-capacity electrode materials for high-performance supercapacitors in alkaline electrolytes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"459 - 473"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Co2+ Doping on Electrochemical Properties of Nickel Metal Tungstate (NiWO4) Positive Material\",\"authors\":\"Jing Tang, Hui Xu, Yong Chen, Yuanqiang Zhu\",\"doi\":\"10.1007/s13391-024-00493-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, transition metal tungstates are emerging as electroactive materials for supercapacitors due to their excellent electrical conductivity and electrochemical properties. Small amounts of transition metal ions doping can affect the physical and electrical properties of transition metal tungstates. In this study, Co ion-doped NiWO<sub>4</sub> amorphous composites (CNWO) were synthesized using a simple and effective hydrothermal method and utilized as the cathode material for supercapacitors. The structure and electrochemical properties of NiWO<sub>4</sub> and CNWO composites were investigated using various testing techniques. Specifically, when the cobalt ion doping amount is 10%, the corresponding CNWO-10 electrode material exhibits a specific capacitance of 804 F g<sup>−1</sup> at 1 A g<sup>−1</sup>, and at a current density of 10 A g<sup>−1</sup>, the capacitance retention rate reaches 66.7%, demonstrating good rate performance. Additionally, an asymmetric supercapacitor device was constructed using CNWO-10 and activated carbon (AC) as positive and negative materials, respectively. Which could cycle reversibly under a potential window of 2.1 V. The device demonstrates a maximum specific capacitance of 76.5 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, and a high energy density of 47 Wh kg<sup>−1</sup> at a power density of 527 W kg<sup>−1</sup>. Furthermore, 96% capacitance cycling stability is maintained after 5500 cycles at a trapezoidal current density. Moreover, the electrical conductivities of NiWO<sub>4</sub> and CNWO-10 samples are 9.01 × 10<sup>–8</sup> S m<sup>−1</sup> and 8.93 × 10<sup>–6</sup> S m<sup>−1</sup>, attributed to the Co ion-doping that can reduce the gap width of the forbidden band to enhance conductivity. These results suggest that CNWO composites can serve as promising high-capacity electrode materials for high-performance supercapacitors in alkaline electrolytes.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 4\",\"pages\":\"459 - 473\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-024-00493-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00493-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
目前,过渡金属钨酸盐因其优异的导电性和电化学性质,正在成为超级电容器的电活性材料。少量过渡金属离子的掺杂会影响过渡金属钨酸盐的物理和电气性能。本研究采用简单有效的水热法合成了掺杂 Co 离子的非晶态 NiWO4 复合材料(CNWO),并将其用作超级电容器的阴极材料。采用各种测试技术研究了 NiWO4 和 CNWO 复合材料的结构和电化学性能。具体而言,当钴离子掺杂量为 10%时,相应的 CNWO-10 电极材料在 1 A g-1 电流密度下的比电容为 804 F g-1,在 10 A g-1 电流密度下的电容保持率达到 66.7%,显示出良好的速率性能。此外,还利用 CNWO-10 和活性炭(AC)分别作为正负极材料,构建了一种非对称超级电容器装置。该装置可在 2.1 V 的电位窗口下可逆循环。该装置在 0.5 A g-1 条件下的最大比电容为 76.5 F g-1,在 527 W kg-1 功率密度条件下的高能量密度为 47 Wh kg-1。此外,在梯形电流密度下循环 5500 次后,96% 的电容循环稳定性得以保持。此外,NiWO4 和 CNWO-10 样品的电导率分别为 9.01 × 10-8 S m-1 和 8.93 × 10-6 S m-1,这归功于掺杂 Co 离子可减小禁带间隙宽度,从而提高电导率。这些结果表明,CNWO 复合材料有望成为碱性电解液中高性能超级电容器的高容量电极材料。 图文摘要
Effect of Co2+ Doping on Electrochemical Properties of Nickel Metal Tungstate (NiWO4) Positive Material
Currently, transition metal tungstates are emerging as electroactive materials for supercapacitors due to their excellent electrical conductivity and electrochemical properties. Small amounts of transition metal ions doping can affect the physical and electrical properties of transition metal tungstates. In this study, Co ion-doped NiWO4 amorphous composites (CNWO) were synthesized using a simple and effective hydrothermal method and utilized as the cathode material for supercapacitors. The structure and electrochemical properties of NiWO4 and CNWO composites were investigated using various testing techniques. Specifically, when the cobalt ion doping amount is 10%, the corresponding CNWO-10 electrode material exhibits a specific capacitance of 804 F g−1 at 1 A g−1, and at a current density of 10 A g−1, the capacitance retention rate reaches 66.7%, demonstrating good rate performance. Additionally, an asymmetric supercapacitor device was constructed using CNWO-10 and activated carbon (AC) as positive and negative materials, respectively. Which could cycle reversibly under a potential window of 2.1 V. The device demonstrates a maximum specific capacitance of 76.5 F g−1 at 0.5 A g−1, and a high energy density of 47 Wh kg−1 at a power density of 527 W kg−1. Furthermore, 96% capacitance cycling stability is maintained after 5500 cycles at a trapezoidal current density. Moreover, the electrical conductivities of NiWO4 and CNWO-10 samples are 9.01 × 10–8 S m−1 and 8.93 × 10–6 S m−1, attributed to the Co ion-doping that can reduce the gap width of the forbidden band to enhance conductivity. These results suggest that CNWO composites can serve as promising high-capacity electrode materials for high-performance supercapacitors in alkaline electrolytes.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.