特征谱正则化反向邻域判别学习

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-05-14 DOI:10.1049/cvi2.12284
Ming Xie, Hengliang Tan, Jiao Du, Shuo Yang, Guofeng Yan, Wangwang Li, Jianwei Feng
{"title":"特征谱正则化反向邻域判别学习","authors":"Ming Xie,&nbsp;Hengliang Tan,&nbsp;Jiao Du,&nbsp;Shuo Yang,&nbsp;Guofeng Yan,&nbsp;Wangwang Li,&nbsp;Jianwei Feng","doi":"10.1049/cvi2.12284","DOIUrl":null,"url":null,"abstract":"<p>Linear discriminant analysis is a classical method for solving problems of dimensional reduction and pattern classification. Although it has been extensively developed, however, it still suffers from various common problems, such as the Small Sample Size (SSS) and the multimodal problem. Neighbourhood linear discriminant analysis (nLDA) was recently proposed to solve the problem of multimodal class caused by the contravention of independently and identically distributed samples. However, due to the existence of many small-scale practical applications, nLDA still has to face the SSS problem, which leads to instability and poor generalisation caused by the singularity of the within-neighbourhood scatter matrix. The authors exploit the eigenspectrum regularisation techniques to circumvent the singularity of the within-neighbourhood scatter matrix of nLDA, which is called Eigenspectrum Regularisation Reverse Neighbourhood Discriminative Learning (ERRNDL). The algorithm of nLDA is reformulated as a framework by searching two projection matrices. Three eigenspectrum regularisation models are introduced to our framework to evaluate the performance. Experiments are conducted on the University of California, Irvine machine learning repository and six image classification datasets. The proposed ERRNDL-based methods achieve considerable performance.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"842-858"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12284","citationCount":"0","resultStr":"{\"title\":\"Eigenspectrum regularisation reverse neighbourhood discriminative learning\",\"authors\":\"Ming Xie,&nbsp;Hengliang Tan,&nbsp;Jiao Du,&nbsp;Shuo Yang,&nbsp;Guofeng Yan,&nbsp;Wangwang Li,&nbsp;Jianwei Feng\",\"doi\":\"10.1049/cvi2.12284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linear discriminant analysis is a classical method for solving problems of dimensional reduction and pattern classification. Although it has been extensively developed, however, it still suffers from various common problems, such as the Small Sample Size (SSS) and the multimodal problem. Neighbourhood linear discriminant analysis (nLDA) was recently proposed to solve the problem of multimodal class caused by the contravention of independently and identically distributed samples. However, due to the existence of many small-scale practical applications, nLDA still has to face the SSS problem, which leads to instability and poor generalisation caused by the singularity of the within-neighbourhood scatter matrix. The authors exploit the eigenspectrum regularisation techniques to circumvent the singularity of the within-neighbourhood scatter matrix of nLDA, which is called Eigenspectrum Regularisation Reverse Neighbourhood Discriminative Learning (ERRNDL). The algorithm of nLDA is reformulated as a framework by searching two projection matrices. Three eigenspectrum regularisation models are introduced to our framework to evaluate the performance. Experiments are conducted on the University of California, Irvine machine learning repository and six image classification datasets. The proposed ERRNDL-based methods achieve considerable performance.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 6\",\"pages\":\"842-858\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12284\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12284\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12284","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

线性判别分析是解决降维和模式分类问题的经典方法。虽然线性判别分析已经得到了广泛的发展,但它仍然存在各种常见问题,例如小样本量(SSS)和多模态问题。最近,有人提出了邻域线性判别分析(nLDA)来解决因样本不独立且同分布而导致的多模态分类问题。然而,由于存在许多小规模的实际应用,nLDA 仍然不得不面对 SSS 问题,即邻域内散点矩阵的奇异性导致的不稳定性和概括性差。作者利用高光谱正则化技术规避了 nLDA 邻域内散点矩阵的奇异性,并将其称为高光谱正则化反向邻域判别学习(ERRNDL)。通过搜索两个投影矩阵,nLDA 的算法被重新表述为一个框架。我们的框架引入了三种特征谱正则化模型来评估其性能。实验在加州大学欧文分校机器学习库和六个图像分类数据集上进行。所提出的基于ERRNDL的方法取得了可观的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eigenspectrum regularisation reverse neighbourhood discriminative learning

Linear discriminant analysis is a classical method for solving problems of dimensional reduction and pattern classification. Although it has been extensively developed, however, it still suffers from various common problems, such as the Small Sample Size (SSS) and the multimodal problem. Neighbourhood linear discriminant analysis (nLDA) was recently proposed to solve the problem of multimodal class caused by the contravention of independently and identically distributed samples. However, due to the existence of many small-scale practical applications, nLDA still has to face the SSS problem, which leads to instability and poor generalisation caused by the singularity of the within-neighbourhood scatter matrix. The authors exploit the eigenspectrum regularisation techniques to circumvent the singularity of the within-neighbourhood scatter matrix of nLDA, which is called Eigenspectrum Regularisation Reverse Neighbourhood Discriminative Learning (ERRNDL). The algorithm of nLDA is reformulated as a framework by searching two projection matrices. Three eigenspectrum regularisation models are introduced to our framework to evaluate the performance. Experiments are conducted on the University of California, Irvine machine learning repository and six image classification datasets. The proposed ERRNDL-based methods achieve considerable performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1