通过工艺模拟和成型试验预测焊缝发生率的基于迁移学习的人工神经网络

IF 3.3 Q2 ENGINEERING, MANUFACTURING Journal of Manufacturing and Materials Processing Pub Date : 2024-05-09 DOI:10.3390/jmmp8030098
Giacomo Baruffa, Andrea Pieressa, M. Sorgato, G. Lucchetta
{"title":"通过工艺模拟和成型试验预测焊缝发生率的基于迁移学习的人工神经网络","authors":"Giacomo Baruffa, Andrea Pieressa, M. Sorgato, G. Lucchetta","doi":"10.3390/jmmp8030098","DOIUrl":null,"url":null,"abstract":"Optimizing process parameters to minimize defects remains an important challenge in injection molding (IM). Machine learning (ML) techniques offer promise in this regard, but their application often requires extensive datasets. Transfer learning (TL) emerges as a solution to this problem, leveraging knowledge from related tasks to enhance model training and performance. This study explores TL’s viability in predicting weld line visibility in injection-molded components using artificial neural networks (ANNs). TL techniques are employed to transfer knowledge between datasets related to different components. Furthermore, both source datasets obtained from simulations and experimental tests are used during the study. In order to use process simulations to obtain data regarding the presence of surface defects, it was necessary to correlate an output variable of the simulations with the experimental observations. The results demonstrate TL’s efficacy in reducing the data required for training predictive models, with simulations proving to be a cost-effective alternative to experimental data. TL from simulations achieves comparable predictive metric values to those of the non-pre-trained network, but with an 83% reduction in the required data for the target dataset. Overall, transfer learning shows promise in streamlining injection molding optimization and reducing manufacturing costs.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning-Based Artificial Neural Network for Predicting Weld Line Occurrence through Process Simulations and Molding Trials\",\"authors\":\"Giacomo Baruffa, Andrea Pieressa, M. Sorgato, G. Lucchetta\",\"doi\":\"10.3390/jmmp8030098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing process parameters to minimize defects remains an important challenge in injection molding (IM). Machine learning (ML) techniques offer promise in this regard, but their application often requires extensive datasets. Transfer learning (TL) emerges as a solution to this problem, leveraging knowledge from related tasks to enhance model training and performance. This study explores TL’s viability in predicting weld line visibility in injection-molded components using artificial neural networks (ANNs). TL techniques are employed to transfer knowledge between datasets related to different components. Furthermore, both source datasets obtained from simulations and experimental tests are used during the study. In order to use process simulations to obtain data regarding the presence of surface defects, it was necessary to correlate an output variable of the simulations with the experimental observations. The results demonstrate TL’s efficacy in reducing the data required for training predictive models, with simulations proving to be a cost-effective alternative to experimental data. TL from simulations achieves comparable predictive metric values to those of the non-pre-trained network, but with an 83% reduction in the required data for the target dataset. Overall, transfer learning shows promise in streamlining injection molding optimization and reducing manufacturing costs.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8030098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8030098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

优化工艺参数以尽量减少缺陷仍然是注塑成型(IM)中的一项重要挑战。机器学习 (ML) 技术在这方面大有可为,但其应用往往需要大量的数据集。迁移学习(TL)是这一问题的解决方案,它利用相关任务的知识来增强模型的训练和性能。本研究利用人工神经网络(ANN)探讨了迁移学习在预测注塑成型部件焊缝可见度方面的可行性。采用 TL 技术在与不同部件相关的数据集之间传递知识。此外,研究中还使用了从模拟和实验测试中获得的源数据集。为了利用过程模拟获得有关表面缺陷存在的数据,有必要将模拟输出变量与实验观察结果相关联。结果表明,TL 能够有效减少训练预测模型所需的数据,模拟被证明是一种替代实验数据的经济有效的方法。模拟中的迁移学习与非预训练网络的预测指标值相当,但目标数据集所需数据却减少了 83%。总之,迁移学习在简化注塑成型优化和降低制造成本方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning-Based Artificial Neural Network for Predicting Weld Line Occurrence through Process Simulations and Molding Trials
Optimizing process parameters to minimize defects remains an important challenge in injection molding (IM). Machine learning (ML) techniques offer promise in this regard, but their application often requires extensive datasets. Transfer learning (TL) emerges as a solution to this problem, leveraging knowledge from related tasks to enhance model training and performance. This study explores TL’s viability in predicting weld line visibility in injection-molded components using artificial neural networks (ANNs). TL techniques are employed to transfer knowledge between datasets related to different components. Furthermore, both source datasets obtained from simulations and experimental tests are used during the study. In order to use process simulations to obtain data regarding the presence of surface defects, it was necessary to correlate an output variable of the simulations with the experimental observations. The results demonstrate TL’s efficacy in reducing the data required for training predictive models, with simulations proving to be a cost-effective alternative to experimental data. TL from simulations achieves comparable predictive metric values to those of the non-pre-trained network, but with an 83% reduction in the required data for the target dataset. Overall, transfer learning shows promise in streamlining injection molding optimization and reducing manufacturing costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
期刊最新文献
Efficiency and Microstructural Forecasts in Friction Stir Extrusion Compared to Traditional Hot Extrusion of AA6061 A New Grinding Wheel Design with a 3D Internal Cooling Structure System Holistic Framework for the Implementation and Validation of PBF-LB/M with Risk Management for Individual Products through Predictive Process Stability Evaluation of Material Extrusion Printed PEEK Mold Inserts for Usage in Ceramic Injection Molding Material Parameter Identification for a Stress-State-Dependent Ductile Damage and Failure Model Applied to Clinch Joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1