掺杂钕和铝对 Li7La3Zr2O12 固态电池微观结构和锂离子传输的影响

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-05-19 DOI:10.1016/j.ssi.2024.116598
Mohammad Golmohammad , Amirreza Sazvar , Mohammad Maleki Shahraki , Mohsen Salimi
{"title":"掺杂钕和铝对 Li7La3Zr2O12 固态电池微观结构和锂离子传输的影响","authors":"Mohammad Golmohammad ,&nbsp;Amirreza Sazvar ,&nbsp;Mohammad Maleki Shahraki ,&nbsp;Mohsen Salimi","doi":"10.1016/j.ssi.2024.116598","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we synthesized co-doped Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3-y</sub>Nd<sub>y</sub>Zr<sub>2</sub>O<sub>12</sub> (LALNZO) solid-state electrolytes with varying Nd contents to investigate the influence Nd plays on phase evolution, microstructure, and lithium-ion conductivity. It was found that incorporating Nd ions into the lattice reduced bulk resistance by controlling Li<sup>+</sup> concentration. However, X-ray diffraction analysis revealed that excessive Nd content led to the formation of Nd<sub>2</sub>O<sub>3</sub>, which negatively impacted ion transport and increased grain boundary resistance. It is noteworthy that the LALNZO (y = 0.2) ceramic exhibited outstanding performance, with 94% relative density, and ionic conductivity of 4.7 × 10<sup>−4</sup> S/cm. The activation energy was 0.32 eV. Further, Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>2.8</sub>Nd<sub>0.2</sub>Zr<sub>2</sub>O<sub>12</sub> was able to demonstrate a stable capacity of 103 mA.h. g<sup>−1</sup> after 50 cycles at a current density of 0.1C when used as an electrolyte in lithium-ion batteries. The findings of this study provide valuable insights for developing advanced solid-state electrolytes for lithium-ion batteries.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Nd and Al co-doping on the microstructure and lithium-ion transport in Li7La3Zr2O12 solid-state batteries\",\"authors\":\"Mohammad Golmohammad ,&nbsp;Amirreza Sazvar ,&nbsp;Mohammad Maleki Shahraki ,&nbsp;Mohsen Salimi\",\"doi\":\"10.1016/j.ssi.2024.116598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we synthesized co-doped Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3-y</sub>Nd<sub>y</sub>Zr<sub>2</sub>O<sub>12</sub> (LALNZO) solid-state electrolytes with varying Nd contents to investigate the influence Nd plays on phase evolution, microstructure, and lithium-ion conductivity. It was found that incorporating Nd ions into the lattice reduced bulk resistance by controlling Li<sup>+</sup> concentration. However, X-ray diffraction analysis revealed that excessive Nd content led to the formation of Nd<sub>2</sub>O<sub>3</sub>, which negatively impacted ion transport and increased grain boundary resistance. It is noteworthy that the LALNZO (y = 0.2) ceramic exhibited outstanding performance, with 94% relative density, and ionic conductivity of 4.7 × 10<sup>−4</sup> S/cm. The activation energy was 0.32 eV. Further, Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>2.8</sub>Nd<sub>0.2</sub>Zr<sub>2</sub>O<sub>12</sub> was able to demonstrate a stable capacity of 103 mA.h. g<sup>−1</sup> after 50 cycles at a current density of 0.1C when used as an electrolyte in lithium-ion batteries. The findings of this study provide valuable insights for developing advanced solid-state electrolytes for lithium-ion batteries.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001462\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001462","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们合成了不同钕含量的共掺杂 Li6.25Al0.25La3-yNdyZr2O12 (LALNZO)固态电解质,以研究钕对相演化、微观结构和锂离子电导率的影响。研究发现,在晶格中加入钕离子可通过控制 Li+ 浓度来降低体电阻。然而,X 射线衍射分析表明,过量的钕含量会导致 Nd2O3 的形成,从而对离子传输产生负面影响并增加晶界电阻。值得注意的是,LALNZO(y = 0.2)陶瓷表现出卓越的性能,其相对密度为 94%,离子导电率为 4.7 × 10-4 S/cm。活化能为 0.32 eV。此外,Li6.25Al0.25La2.8Nd0.2Zr2O12 用作锂离子电池的电解质时,在电流密度为 0.1C 的条件下,经过 50 次循环后,其容量稳定在 103 mA.h. g-1。这项研究结果为开发先进的锂离子电池固态电解质提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Nd and Al co-doping on the microstructure and lithium-ion transport in Li7La3Zr2O12 solid-state batteries

In this study, we synthesized co-doped Li6.25Al0.25La3-yNdyZr2O12 (LALNZO) solid-state electrolytes with varying Nd contents to investigate the influence Nd plays on phase evolution, microstructure, and lithium-ion conductivity. It was found that incorporating Nd ions into the lattice reduced bulk resistance by controlling Li+ concentration. However, X-ray diffraction analysis revealed that excessive Nd content led to the formation of Nd2O3, which negatively impacted ion transport and increased grain boundary resistance. It is noteworthy that the LALNZO (y = 0.2) ceramic exhibited outstanding performance, with 94% relative density, and ionic conductivity of 4.7 × 10−4 S/cm. The activation energy was 0.32 eV. Further, Li6.25Al0.25La2.8Nd0.2Zr2O12 was able to demonstrate a stable capacity of 103 mA.h. g−1 after 50 cycles at a current density of 0.1C when used as an electrolyte in lithium-ion batteries. The findings of this study provide valuable insights for developing advanced solid-state electrolytes for lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Impact of polypyrrole coating on the electrochemical properties of Li1.04Fe0.3Mn0.7PO4 cathode materials Surrogate modeling for transient electrochemical potential analysis for SOFC using proper orthogonal decomposition Construction of conductive PTh-promoted NaTi2(PO4)3 nanocomposite with two-electron reactions for sodium energy storage Dependence of electrical properties on the concentration of tantalum in ceramics Li0.12Na0.88TayNb1-yO3 (y = 0.15, 0.2, 0.25) obtained at high pressure New hybrid materials based on cardo polybenzimidazole PBI-O-PhT and modified silica with covalent silanol cross-linking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1