Mohammad Golmohammad , Amirreza Sazvar , Mohammad Maleki Shahraki , Mohsen Salimi
{"title":"掺杂钕和铝对 Li7La3Zr2O12 固态电池微观结构和锂离子传输的影响","authors":"Mohammad Golmohammad , Amirreza Sazvar , Mohammad Maleki Shahraki , Mohsen Salimi","doi":"10.1016/j.ssi.2024.116598","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we synthesized co-doped Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3-y</sub>Nd<sub>y</sub>Zr<sub>2</sub>O<sub>12</sub> (LALNZO) solid-state electrolytes with varying Nd contents to investigate the influence Nd plays on phase evolution, microstructure, and lithium-ion conductivity. It was found that incorporating Nd ions into the lattice reduced bulk resistance by controlling Li<sup>+</sup> concentration. However, X-ray diffraction analysis revealed that excessive Nd content led to the formation of Nd<sub>2</sub>O<sub>3</sub>, which negatively impacted ion transport and increased grain boundary resistance. It is noteworthy that the LALNZO (y = 0.2) ceramic exhibited outstanding performance, with 94% relative density, and ionic conductivity of 4.7 × 10<sup>−4</sup> S/cm. The activation energy was 0.32 eV. Further, Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>2.8</sub>Nd<sub>0.2</sub>Zr<sub>2</sub>O<sub>12</sub> was able to demonstrate a stable capacity of 103 mA.h. g<sup>−1</sup> after 50 cycles at a current density of 0.1C when used as an electrolyte in lithium-ion batteries. The findings of this study provide valuable insights for developing advanced solid-state electrolytes for lithium-ion batteries.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116598"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Nd and Al co-doping on the microstructure and lithium-ion transport in Li7La3Zr2O12 solid-state batteries\",\"authors\":\"Mohammad Golmohammad , Amirreza Sazvar , Mohammad Maleki Shahraki , Mohsen Salimi\",\"doi\":\"10.1016/j.ssi.2024.116598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we synthesized co-doped Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>3-y</sub>Nd<sub>y</sub>Zr<sub>2</sub>O<sub>12</sub> (LALNZO) solid-state electrolytes with varying Nd contents to investigate the influence Nd plays on phase evolution, microstructure, and lithium-ion conductivity. It was found that incorporating Nd ions into the lattice reduced bulk resistance by controlling Li<sup>+</sup> concentration. However, X-ray diffraction analysis revealed that excessive Nd content led to the formation of Nd<sub>2</sub>O<sub>3</sub>, which negatively impacted ion transport and increased grain boundary resistance. It is noteworthy that the LALNZO (y = 0.2) ceramic exhibited outstanding performance, with 94% relative density, and ionic conductivity of 4.7 × 10<sup>−4</sup> S/cm. The activation energy was 0.32 eV. Further, Li<sub>6.25</sub>Al<sub>0.25</sub>La<sub>2.8</sub>Nd<sub>0.2</sub>Zr<sub>2</sub>O<sub>12</sub> was able to demonstrate a stable capacity of 103 mA.h. g<sup>−1</sup> after 50 cycles at a current density of 0.1C when used as an electrolyte in lithium-ion batteries. The findings of this study provide valuable insights for developing advanced solid-state electrolytes for lithium-ion batteries.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"412 \",\"pages\":\"Article 116598\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001462\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001462","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effects of Nd and Al co-doping on the microstructure and lithium-ion transport in Li7La3Zr2O12 solid-state batteries
In this study, we synthesized co-doped Li6.25Al0.25La3-yNdyZr2O12 (LALNZO) solid-state electrolytes with varying Nd contents to investigate the influence Nd plays on phase evolution, microstructure, and lithium-ion conductivity. It was found that incorporating Nd ions into the lattice reduced bulk resistance by controlling Li+ concentration. However, X-ray diffraction analysis revealed that excessive Nd content led to the formation of Nd2O3, which negatively impacted ion transport and increased grain boundary resistance. It is noteworthy that the LALNZO (y = 0.2) ceramic exhibited outstanding performance, with 94% relative density, and ionic conductivity of 4.7 × 10−4 S/cm. The activation energy was 0.32 eV. Further, Li6.25Al0.25La2.8Nd0.2Zr2O12 was able to demonstrate a stable capacity of 103 mA.h. g−1 after 50 cycles at a current density of 0.1C when used as an electrolyte in lithium-ion batteries. The findings of this study provide valuable insights for developing advanced solid-state electrolytes for lithium-ion batteries.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.