Myriam Lemmens , Lena Dorsheimer , Andreas Zeller , Yasmin Dietz-Baum
{"title":"新型药物的非临床安全性评估:基于病毒、核酸酶和核苷酸的基因疗法的基因组安全性视角","authors":"Myriam Lemmens , Lena Dorsheimer , Andreas Zeller , Yasmin Dietz-Baum","doi":"10.1016/j.mrgentox.2024.503767","DOIUrl":null,"url":null,"abstract":"<div><p>Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"896 ","pages":"Article 503767"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies\",\"authors\":\"Myriam Lemmens , Lena Dorsheimer , Andreas Zeller , Yasmin Dietz-Baum\",\"doi\":\"10.1016/j.mrgentox.2024.503767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.</p></div>\",\"PeriodicalId\":18799,\"journal\":{\"name\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"volume\":\"896 \",\"pages\":\"Article 503767\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation research. Genetic toxicology and environmental mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383571824000433\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000433","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.