{"title":"基于分数的生成模型辅助信息补偿,实现高质量的光声断层扫描有限视角重建","authors":"Kangjun Guo , Zhiyuan Zheng , Wenhua Zhong , Zilong Li , Guijun Wang, Jiahong Li, Yubin Cao, Yiguang Wang, Jiabin Lin, Qiegen Liu, Xianlin Song","doi":"10.1016/j.pacs.2024.100623","DOIUrl":null,"url":null,"abstract":"<div><p>Photoacoustic tomography (PAT) regularly operates in limited-view cases owing to data acquisition limitations. The results using traditional methods in limited-view PAT exhibit distortions and numerous artifacts. Here, a novel limited-view PAT reconstruction strategy that combines model-based iteration with score-based generative model was proposed. By incrementally adding noise to the training samples, prior knowledge can be learned from the complex probability distribution. The acquired prior is then utilized as constraint in model-based iteration. The information of missing views can be gradually compensated by cyclic iteration to achieve high-quality reconstruction. The performance of the proposed method was evaluated with the circular phantom and <em>in vivo</em> experimental data. Experimental results demonstrate the outstanding effectiveness of the proposed method in limited-view cases. Notably, the proposed method exhibits excellent performance in limited-view case of 70° compared with traditional method. It achieves a remarkable improvement of 203% in PSNR and 48% in SSIM for the circular phantom experimental data, and an enhancement of 81% in PSNR and 65% in SSIM for <em>in vivo</em> experimental data, respectively. The proposed method has capability of reconstructing PAT images in extremely limited-view cases, which will further expand the application in clinical scenarios.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"38 ","pages":"Article 100623"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000405/pdfft?md5=50e940c7b653838938648a1b25d84ca9&pid=1-s2.0-S2213597924000405-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography\",\"authors\":\"Kangjun Guo , Zhiyuan Zheng , Wenhua Zhong , Zilong Li , Guijun Wang, Jiahong Li, Yubin Cao, Yiguang Wang, Jiabin Lin, Qiegen Liu, Xianlin Song\",\"doi\":\"10.1016/j.pacs.2024.100623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photoacoustic tomography (PAT) regularly operates in limited-view cases owing to data acquisition limitations. The results using traditional methods in limited-view PAT exhibit distortions and numerous artifacts. Here, a novel limited-view PAT reconstruction strategy that combines model-based iteration with score-based generative model was proposed. By incrementally adding noise to the training samples, prior knowledge can be learned from the complex probability distribution. The acquired prior is then utilized as constraint in model-based iteration. The information of missing views can be gradually compensated by cyclic iteration to achieve high-quality reconstruction. The performance of the proposed method was evaluated with the circular phantom and <em>in vivo</em> experimental data. Experimental results demonstrate the outstanding effectiveness of the proposed method in limited-view cases. Notably, the proposed method exhibits excellent performance in limited-view case of 70° compared with traditional method. It achieves a remarkable improvement of 203% in PSNR and 48% in SSIM for the circular phantom experimental data, and an enhancement of 81% in PSNR and 65% in SSIM for <em>in vivo</em> experimental data, respectively. The proposed method has capability of reconstructing PAT images in extremely limited-view cases, which will further expand the application in clinical scenarios.</p></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"38 \",\"pages\":\"Article 100623\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000405/pdfft?md5=50e940c7b653838938648a1b25d84ca9&pid=1-s2.0-S2213597924000405-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000405\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000405","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography
Photoacoustic tomography (PAT) regularly operates in limited-view cases owing to data acquisition limitations. The results using traditional methods in limited-view PAT exhibit distortions and numerous artifacts. Here, a novel limited-view PAT reconstruction strategy that combines model-based iteration with score-based generative model was proposed. By incrementally adding noise to the training samples, prior knowledge can be learned from the complex probability distribution. The acquired prior is then utilized as constraint in model-based iteration. The information of missing views can be gradually compensated by cyclic iteration to achieve high-quality reconstruction. The performance of the proposed method was evaluated with the circular phantom and in vivo experimental data. Experimental results demonstrate the outstanding effectiveness of the proposed method in limited-view cases. Notably, the proposed method exhibits excellent performance in limited-view case of 70° compared with traditional method. It achieves a remarkable improvement of 203% in PSNR and 48% in SSIM for the circular phantom experimental data, and an enhancement of 81% in PSNR and 65% in SSIM for in vivo experimental data, respectively. The proposed method has capability of reconstructing PAT images in extremely limited-view cases, which will further expand the application in clinical scenarios.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.