多层结构的太阳吸收和热辐射特性分析

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-05-24 DOI:10.1016/j.ijthermalsci.2024.109172
Ying Zheng , Wenchao Zhao , Qianjv Song , Can Ma , Zao Yi , Qingdong Zeng , Tangyou Sun , Junxue Chen , Jiaquan Yan
{"title":"多层结构的太阳吸收和热辐射特性分析","authors":"Ying Zheng ,&nbsp;Wenchao Zhao ,&nbsp;Qianjv Song ,&nbsp;Can Ma ,&nbsp;Zao Yi ,&nbsp;Qingdong Zeng ,&nbsp;Tangyou Sun ,&nbsp;Junxue Chen ,&nbsp;Jiaquan Yan","doi":"10.1016/j.ijthermalsci.2024.109172","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we explore the possibility that a hexagonal ring structure can be used as a solar absorber and a thermal emitter for multiple applications. By using FDTD (finite-difference time-domain) Solutions for numerical simulation, the light source is set to 280 nm–2500 nm, and the following properties of the structure are studied. Firstly, the structure achieves an average absorption efficiency of 92.57 % and 97.88 % at AM (Air Mass) 1.5, and the bandwidth is 283 nm–2006 nm (absorption efficiency greater than 90 %), which achieves ultra-broadband perfect absorption. Secondly, the structure can theoretically work at 1500 K, at which the thermal radiation efficiency is 89.13 %. When considering the oxidation and decomposition of materials in practical applications, the structure can work up to 700 K, and the thermal radiation efficiency decreases to 77.07 %. Therefore, the structure has excellent absorption and radiation performance, and has a wide range of applications as a solar absorber or thermal emitter.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of solar absorption and thermal radiation properties of a multi-layer structure\",\"authors\":\"Ying Zheng ,&nbsp;Wenchao Zhao ,&nbsp;Qianjv Song ,&nbsp;Can Ma ,&nbsp;Zao Yi ,&nbsp;Qingdong Zeng ,&nbsp;Tangyou Sun ,&nbsp;Junxue Chen ,&nbsp;Jiaquan Yan\",\"doi\":\"10.1016/j.ijthermalsci.2024.109172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we explore the possibility that a hexagonal ring structure can be used as a solar absorber and a thermal emitter for multiple applications. By using FDTD (finite-difference time-domain) Solutions for numerical simulation, the light source is set to 280 nm–2500 nm, and the following properties of the structure are studied. Firstly, the structure achieves an average absorption efficiency of 92.57 % and 97.88 % at AM (Air Mass) 1.5, and the bandwidth is 283 nm–2006 nm (absorption efficiency greater than 90 %), which achieves ultra-broadband perfect absorption. Secondly, the structure can theoretically work at 1500 K, at which the thermal radiation efficiency is 89.13 %. When considering the oxidation and decomposition of materials in practical applications, the structure can work up to 700 K, and the thermal radiation efficiency decreases to 77.07 %. Therefore, the structure has excellent absorption and radiation performance, and has a wide range of applications as a solar absorber or thermal emitter.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924002941\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924002941","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探讨了六角环结构作为太阳能吸收器和热辐射器进行多种应用的可能性。通过使用 FDTD(有限差分时域)解决方案进行数值模拟,将光源设置为 280 nm-2500 nm,研究了该结构的以下特性。首先,该结构的平均吸收效率达到 92.57 %,在 AM(空气质量)1.5 时达到 97.88 %,带宽为 283 nm-2006 nm(吸收效率大于 90 %),实现了超宽带完美吸收。其次,该结构理论上可在 1500 K 下工作,热辐射效率为 89.13 %。考虑到实际应用中材料的氧化和分解,该结构的工作温度可达 700 K,热辐射效率则降至 77.07 %。因此,该结构具有优异的吸收和辐射性能,作为太阳能吸收器或热辐射器具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of solar absorption and thermal radiation properties of a multi-layer structure

In this work, we explore the possibility that a hexagonal ring structure can be used as a solar absorber and a thermal emitter for multiple applications. By using FDTD (finite-difference time-domain) Solutions for numerical simulation, the light source is set to 280 nm–2500 nm, and the following properties of the structure are studied. Firstly, the structure achieves an average absorption efficiency of 92.57 % and 97.88 % at AM (Air Mass) 1.5, and the bandwidth is 283 nm–2006 nm (absorption efficiency greater than 90 %), which achieves ultra-broadband perfect absorption. Secondly, the structure can theoretically work at 1500 K, at which the thermal radiation efficiency is 89.13 %. When considering the oxidation and decomposition of materials in practical applications, the structure can work up to 700 K, and the thermal radiation efficiency decreases to 77.07 %. Therefore, the structure has excellent absorption and radiation performance, and has a wide range of applications as a solar absorber or thermal emitter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1