A. Ganda, Diah Wulandari, Firman Yasa Utama, W. Warju, Dyah Riandadari, Dewi Puspitasari, Lena Citra Manggalasari
{"title":"加入石墨烯纳米填料改善木薯皮淀粉生物塑料的疏水性能","authors":"A. Ganda, Diah Wulandari, Firman Yasa Utama, W. Warju, Dyah Riandadari, Dewi Puspitasari, Lena Citra Manggalasari","doi":"10.4028/p-9fcqbm","DOIUrl":null,"url":null,"abstract":"Cassava starch bioplastics have been known well as an alternative plastic replacing conventional petrochemical plastics, which have difficulty degrading rapidly in the environment. Cassava peels as waste is a potential eco-friendly starch source for biodegradable plastic. This study investigated the effect of graphene as a nanofiller on the hydrophobic properties of cassava peel starch film. Bioplastic was synthesized using the melt blending method by adding graphene in various amounts, which were 3 wt%, 5 wt%, and 7 wt%. Graphene was found to be able to increase the contact angle of the films up to 93° with the addition of 5 wt%. Graphene also affects water absorption properties. These results indicate that the hydrophobic properties of cassava peel starch films could be modified by adding graphene nanofiller.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"32 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Graphene Nanofiller for the Improvement of Hydrophobic Properties of Cassava Peel Starch Bioplastic\",\"authors\":\"A. Ganda, Diah Wulandari, Firman Yasa Utama, W. Warju, Dyah Riandadari, Dewi Puspitasari, Lena Citra Manggalasari\",\"doi\":\"10.4028/p-9fcqbm\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cassava starch bioplastics have been known well as an alternative plastic replacing conventional petrochemical plastics, which have difficulty degrading rapidly in the environment. Cassava peels as waste is a potential eco-friendly starch source for biodegradable plastic. This study investigated the effect of graphene as a nanofiller on the hydrophobic properties of cassava peel starch film. Bioplastic was synthesized using the melt blending method by adding graphene in various amounts, which were 3 wt%, 5 wt%, and 7 wt%. Graphene was found to be able to increase the contact angle of the films up to 93° with the addition of 5 wt%. Graphene also affects water absorption properties. These results indicate that the hydrophobic properties of cassava peel starch films could be modified by adding graphene nanofiller.\",\"PeriodicalId\":18262,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\"32 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-9fcqbm\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-9fcqbm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incorporating Graphene Nanofiller for the Improvement of Hydrophobic Properties of Cassava Peel Starch Bioplastic
Cassava starch bioplastics have been known well as an alternative plastic replacing conventional petrochemical plastics, which have difficulty degrading rapidly in the environment. Cassava peels as waste is a potential eco-friendly starch source for biodegradable plastic. This study investigated the effect of graphene as a nanofiller on the hydrophobic properties of cassava peel starch film. Bioplastic was synthesized using the melt blending method by adding graphene in various amounts, which were 3 wt%, 5 wt%, and 7 wt%. Graphene was found to be able to increase the contact angle of the films up to 93° with the addition of 5 wt%. Graphene also affects water absorption properties. These results indicate that the hydrophobic properties of cassava peel starch films could be modified by adding graphene nanofiller.