{"title":"用于先进金属离子混合超级电容器的生物质衍生碳材料:迈向更可持续能源的一步","authors":"Syed Shaheen Shah","doi":"10.3390/batteries10050168","DOIUrl":null,"url":null,"abstract":"Modern research has made the search for high-performance, sustainable, and efficient energy storage technologies a main focus, especially in light of the growing environmental and energy-demanding issues. This review paper focuses on the pivotal role of biomass-derived carbon (BDC) materials in the development of high-performance metal-ion hybrid supercapacitors (MIHSCs), specifically targeting sodium (Na)-, potassium (K)-, aluminium (Al)-, and zinc (Zn)-ion-based systems. Due to their widespread availability, renewable nature, and exceptional physicochemical properties, BDC materials are ideal for supercapacitor electrodes, which perfectly balance environmental sustainability and technological advancement. This paper delves into the synthesis, functionalization, and structural engineering of advanced biomass-based carbon materials, highlighting the strategies to enhance their electrochemical performance. It elaborates on the unique characteristics of these carbons, such as high specific surface area, tuneable porosity, and heteroatom doping, which are pivotal in achieving superior capacitance, energy density, and cycling stability in Na-, K-, Al-, and Zn-ion hybrid supercapacitors. Furthermore, the compatibility of BDCs with metal-ion electrolytes and their role in facilitating ion transport and charge storage mechanisms are critically analysed. Novelty arises from a comprehensive comparison of these carbon materials across metal-ion systems, unveiling the synergistic effects of BDCs’ structural attributes on the performance of each supercapacitor type. This review also casts light on the current challenges, such as scalability, cost-effectiveness, and performance consistency, offering insightful perspectives for future research. This review underscores the transformative potential of BDC materials in MIHSCs and paves the way for next-generation energy storage technologies that are both high-performing and ecologically friendly. It calls for continued innovation and interdisciplinary collaboration to explore these sustainable materials, thereby contributing to advancing green energy technologies.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy\",\"authors\":\"Syed Shaheen Shah\",\"doi\":\"10.3390/batteries10050168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern research has made the search for high-performance, sustainable, and efficient energy storage technologies a main focus, especially in light of the growing environmental and energy-demanding issues. This review paper focuses on the pivotal role of biomass-derived carbon (BDC) materials in the development of high-performance metal-ion hybrid supercapacitors (MIHSCs), specifically targeting sodium (Na)-, potassium (K)-, aluminium (Al)-, and zinc (Zn)-ion-based systems. Due to their widespread availability, renewable nature, and exceptional physicochemical properties, BDC materials are ideal for supercapacitor electrodes, which perfectly balance environmental sustainability and technological advancement. This paper delves into the synthesis, functionalization, and structural engineering of advanced biomass-based carbon materials, highlighting the strategies to enhance their electrochemical performance. It elaborates on the unique characteristics of these carbons, such as high specific surface area, tuneable porosity, and heteroatom doping, which are pivotal in achieving superior capacitance, energy density, and cycling stability in Na-, K-, Al-, and Zn-ion hybrid supercapacitors. Furthermore, the compatibility of BDCs with metal-ion electrolytes and their role in facilitating ion transport and charge storage mechanisms are critically analysed. Novelty arises from a comprehensive comparison of these carbon materials across metal-ion systems, unveiling the synergistic effects of BDCs’ structural attributes on the performance of each supercapacitor type. This review also casts light on the current challenges, such as scalability, cost-effectiveness, and performance consistency, offering insightful perspectives for future research. This review underscores the transformative potential of BDC materials in MIHSCs and paves the way for next-generation energy storage technologies that are both high-performing and ecologically friendly. It calls for continued innovation and interdisciplinary collaboration to explore these sustainable materials, thereby contributing to advancing green energy technologies.\",\"PeriodicalId\":8755,\"journal\":{\"name\":\"Batteries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10050168\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10050168","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Biomass-Derived Carbon Materials for Advanced Metal-Ion Hybrid Supercapacitors: A Step Towards More Sustainable Energy
Modern research has made the search for high-performance, sustainable, and efficient energy storage technologies a main focus, especially in light of the growing environmental and energy-demanding issues. This review paper focuses on the pivotal role of biomass-derived carbon (BDC) materials in the development of high-performance metal-ion hybrid supercapacitors (MIHSCs), specifically targeting sodium (Na)-, potassium (K)-, aluminium (Al)-, and zinc (Zn)-ion-based systems. Due to their widespread availability, renewable nature, and exceptional physicochemical properties, BDC materials are ideal for supercapacitor electrodes, which perfectly balance environmental sustainability and technological advancement. This paper delves into the synthesis, functionalization, and structural engineering of advanced biomass-based carbon materials, highlighting the strategies to enhance their electrochemical performance. It elaborates on the unique characteristics of these carbons, such as high specific surface area, tuneable porosity, and heteroatom doping, which are pivotal in achieving superior capacitance, energy density, and cycling stability in Na-, K-, Al-, and Zn-ion hybrid supercapacitors. Furthermore, the compatibility of BDCs with metal-ion electrolytes and their role in facilitating ion transport and charge storage mechanisms are critically analysed. Novelty arises from a comprehensive comparison of these carbon materials across metal-ion systems, unveiling the synergistic effects of BDCs’ structural attributes on the performance of each supercapacitor type. This review also casts light on the current challenges, such as scalability, cost-effectiveness, and performance consistency, offering insightful perspectives for future research. This review underscores the transformative potential of BDC materials in MIHSCs and paves the way for next-generation energy storage technologies that are both high-performing and ecologically friendly. It calls for continued innovation and interdisciplinary collaboration to explore these sustainable materials, thereby contributing to advancing green energy technologies.