{"title":"空间回归的降维:空间预测包络","authors":"Paul May , Hossein Moradi Rekabdarkolaee","doi":"10.1016/j.spasta.2024.100838","DOIUrl":null,"url":null,"abstract":"<div><p>Natural sciences such as geology and forestry often utilize regression models for spatial data with many predictors and small to moderate sample sizes. In these settings, efficient estimation of the regression parameters is crucial for both model interpretation and prediction. We propose a dimension reduction approach for spatial regression that assumes certain linear combinations of the predictors are immaterial to the regression. The model and corresponding inference provide efficient estimation of regression parameters while accounting for spatial correlation in the data. We employed the maximum likelihood estimation approach to estimate the parameters of the model. The effectiveness of the proposed model is illustrated through simulation studies and the analysis of a geochemical data set, predicting rare earth element concentrations within an oil and gas reserve in Wyoming. Simulation results indicate that our proposed model offers a significant reduction in the mean square errors and variation of the regression coefficients. Furthermore, the method provided a 50% reduction in prediction variance for rare earth element concentrations within our data analysis.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension reduction for spatial regression: Spatial predictor envelope\",\"authors\":\"Paul May , Hossein Moradi Rekabdarkolaee\",\"doi\":\"10.1016/j.spasta.2024.100838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural sciences such as geology and forestry often utilize regression models for spatial data with many predictors and small to moderate sample sizes. In these settings, efficient estimation of the regression parameters is crucial for both model interpretation and prediction. We propose a dimension reduction approach for spatial regression that assumes certain linear combinations of the predictors are immaterial to the regression. The model and corresponding inference provide efficient estimation of regression parameters while accounting for spatial correlation in the data. We employed the maximum likelihood estimation approach to estimate the parameters of the model. The effectiveness of the proposed model is illustrated through simulation studies and the analysis of a geochemical data set, predicting rare earth element concentrations within an oil and gas reserve in Wyoming. Simulation results indicate that our proposed model offers a significant reduction in the mean square errors and variation of the regression coefficients. Furthermore, the method provided a 50% reduction in prediction variance for rare earth element concentrations within our data analysis.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000290\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000290","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Dimension reduction for spatial regression: Spatial predictor envelope
Natural sciences such as geology and forestry often utilize regression models for spatial data with many predictors and small to moderate sample sizes. In these settings, efficient estimation of the regression parameters is crucial for both model interpretation and prediction. We propose a dimension reduction approach for spatial regression that assumes certain linear combinations of the predictors are immaterial to the regression. The model and corresponding inference provide efficient estimation of regression parameters while accounting for spatial correlation in the data. We employed the maximum likelihood estimation approach to estimate the parameters of the model. The effectiveness of the proposed model is illustrated through simulation studies and the analysis of a geochemical data set, predicting rare earth element concentrations within an oil and gas reserve in Wyoming. Simulation results indicate that our proposed model offers a significant reduction in the mean square errors and variation of the regression coefficients. Furthermore, the method provided a 50% reduction in prediction variance for rare earth element concentrations within our data analysis.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.