天文学图像分割方法概览

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astronomy and Computing Pub Date : 2024-05-23 DOI:10.1016/j.ascom.2024.100838
D. Xu , Y. Zhu
{"title":"天文学图像分割方法概览","authors":"D. Xu ,&nbsp;Y. Zhu","doi":"10.1016/j.ascom.2024.100838","DOIUrl":null,"url":null,"abstract":"<div><p>Image segmentation plays a critical role in unlocking the mysteries of the universe, providing astronomers with a clearer perspective on celestial objects within complex astronomical images and data cubes. Manual segmentation, while traditional, is not only time-consuming but also susceptible to biases introduced by human intervention. As a result, automated segmentation methods have become essential for achieving robust and consistent results in astronomical studies. This review begins by summarizing traditional and classical segmentation methods widely used in astronomical tasks. Despite the significant improvements these methods have brought to segmentation outcomes, they fail to meet astronomers’ expectations, requiring additional human correction, further intensifying the labor-intensive nature of the segmentation process. The review then focuses on the transformative impact of machine learning, particularly deep learning, on segmentation tasks in astronomy. It introduces state-of-the-art machine learning approaches, highlighting their applications and the remarkable advancements they bring to segmentation accuracy in both astronomical images and data cubes. As the field of machine learning continues to evolve rapidly, it is anticipated that astronomers will increasingly leverage these sophisticated techniques to enhance segmentation tasks in their research projects. In essence, this review serves as a comprehensive guide to the evolution of segmentation methods in astronomy, emphasizing the transition from classical approaches to cutting-edge machine learning methodologies. We encourage astronomers to embrace these advancements, fostering a more streamlined and accurate segmentation process that aligns with the ever-expanding frontiers of astronomical exploration.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100838"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surveying image segmentation approaches in astronomy\",\"authors\":\"D. Xu ,&nbsp;Y. Zhu\",\"doi\":\"10.1016/j.ascom.2024.100838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image segmentation plays a critical role in unlocking the mysteries of the universe, providing astronomers with a clearer perspective on celestial objects within complex astronomical images and data cubes. Manual segmentation, while traditional, is not only time-consuming but also susceptible to biases introduced by human intervention. As a result, automated segmentation methods have become essential for achieving robust and consistent results in astronomical studies. This review begins by summarizing traditional and classical segmentation methods widely used in astronomical tasks. Despite the significant improvements these methods have brought to segmentation outcomes, they fail to meet astronomers’ expectations, requiring additional human correction, further intensifying the labor-intensive nature of the segmentation process. The review then focuses on the transformative impact of machine learning, particularly deep learning, on segmentation tasks in astronomy. It introduces state-of-the-art machine learning approaches, highlighting their applications and the remarkable advancements they bring to segmentation accuracy in both astronomical images and data cubes. As the field of machine learning continues to evolve rapidly, it is anticipated that astronomers will increasingly leverage these sophisticated techniques to enhance segmentation tasks in their research projects. In essence, this review serves as a comprehensive guide to the evolution of segmentation methods in astronomy, emphasizing the transition from classical approaches to cutting-edge machine learning methodologies. We encourage astronomers to embrace these advancements, fostering a more streamlined and accurate segmentation process that aligns with the ever-expanding frontiers of astronomical exploration.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"48 \",\"pages\":\"Article 100838\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000532\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000532","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

图像分割在揭开宇宙奥秘的过程中起着至关重要的作用,它为天文学家提供了一个更清晰的视角,让他们了解复杂天文图像和数据立方体中的天体。手动分割虽然是传统方法,但不仅耗时,而且容易受到人为干预带来的偏差的影响。因此,要想在天文研究中获得稳健一致的结果,自动分割方法已变得至关重要。本综述首先总结了在天文任务中广泛使用的传统和经典分割方法。尽管这些方法大大改进了分割结果,但仍无法满足天文学家的期望,需要额外的人工修正,进一步加剧了分割过程的劳动密集型。本综述随后将重点讨论机器学习,尤其是深度学习对天文学中的细分任务所产生的变革性影响。文章介绍了最先进的机器学习方法,重点介绍了这些方法的应用,以及它们在提高天文图像和数据立方体的分割精度方面所取得的显著进步。随着机器学习领域的持续快速发展,预计天文学家将越来越多地利用这些复杂的技术来增强其研究项目中的分割任务。从本质上讲,这篇综述是天文学中细分方法演变的综合指南,强调了从经典方法到尖端机器学习方法的过渡。我们鼓励天文学家拥抱这些进步,促进更简化、更准确的细分过程,与不断扩展的天文探索前沿保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surveying image segmentation approaches in astronomy

Image segmentation plays a critical role in unlocking the mysteries of the universe, providing astronomers with a clearer perspective on celestial objects within complex astronomical images and data cubes. Manual segmentation, while traditional, is not only time-consuming but also susceptible to biases introduced by human intervention. As a result, automated segmentation methods have become essential for achieving robust and consistent results in astronomical studies. This review begins by summarizing traditional and classical segmentation methods widely used in astronomical tasks. Despite the significant improvements these methods have brought to segmentation outcomes, they fail to meet astronomers’ expectations, requiring additional human correction, further intensifying the labor-intensive nature of the segmentation process. The review then focuses on the transformative impact of machine learning, particularly deep learning, on segmentation tasks in astronomy. It introduces state-of-the-art machine learning approaches, highlighting their applications and the remarkable advancements they bring to segmentation accuracy in both astronomical images and data cubes. As the field of machine learning continues to evolve rapidly, it is anticipated that astronomers will increasingly leverage these sophisticated techniques to enhance segmentation tasks in their research projects. In essence, this review serves as a comprehensive guide to the evolution of segmentation methods in astronomy, emphasizing the transition from classical approaches to cutting-edge machine learning methodologies. We encourage astronomers to embrace these advancements, fostering a more streamlined and accurate segmentation process that aligns with the ever-expanding frontiers of astronomical exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
期刊最新文献
Impact of ghost dark energy on cosmic evolution in f(Q, L m) theory Parameterized Hubble parameter with observational constraints in fractal gravity Illuminating the Moon: Reconstruction of lunar terrain using photogrammetry, Neural Radiance Fields, and Gaussian Splatting Editorial Board A multi-stage machine learning-based method to estimate wind parameters from Hα lines of massive stars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1